Skip to main content

Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions

Abstract

Active protein inclusions in biological membranes can represent nano-swimmers and propel themselves in lipid bilayers. A simple model of an active inclusion with three particles (domains) connected by variable elastic links is considered. First, the membrane is modeled as a two-dimensional viscous fluid and propulsion behavior in two dimensions is examined. After that, an example of a microscopic dynamical simulation is presented, where the lipid bilayer structure of the membrane is resolved and the solvent effects are included by multiparticle collision dynamics. Statistical analysis of data reveals ballistic motion of the swimmer, in contrast to the classical diffusion behavior found in the absence of active transitions between the states.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1

    E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    ADS  Article  Google Scholar 

  2. 2

    A. Shapere, F. Wilzcek, Phys. Rev. Lett. 58, 2051 (1987)

    ADS  Article  Google Scholar 

  3. 3

    D. Tam, A. Hosoi, Phys. Rev. Lett. 98, 068105 (2007)

    ADS  Article  Google Scholar 

  4. 4

    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    ADS  Article  Google Scholar 

  5. 5

    M. Iima, A.S. Mikhailov, EPL 85, 44001 (2009)

    ADS  Article  Google Scholar 

  6. 6

    S. Alonso, A.S. Mikhailov, Phys. Rev. E 79, 061906 (2009)

    ADS  Article  Google Scholar 

  7. 7

    T. Sakaue, R. Kapral, A.S. Mikhailov, Eur. Phys. J. B 75, 381 (2010)

    ADS  Article  MATH  Google Scholar 

  8. 8

    R. Golestanian, A. Ajdari, Phys. Rev. Lett. 100, 038101 (2010)

    ADS  Article  Google Scholar 

  9. 9

    R. Golestanian, Phys. Rev. Lett. 105, 018103 (2010)

    ADS  Article  Google Scholar 

  10. 10

    B. Alberts, Cell 92, 291 (1998)

    Article  Google Scholar 

  11. 11

    N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando, Nature 468, 72 (2010)

    ADS  Article  Google Scholar 

  12. 12

    T. Uchinashi, R. Iino, T. Ando, H. Noji, Science 333, 755 (2011)

    ADS  Article  Google Scholar 

  13. 13

    H. Flechsig, A.S. Mikhailov, Proc. Natl. Acad. Sci. U.S.A. 107, 20875 (2010)

    ADS  Article  Google Scholar 

  14. 14

    C. Echeverria, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Chem. Chem. Phys. 13, 10527 (2011)

    Article  Google Scholar 

  15. 15

    J. Prost, R. Bruinsma, EPL 33, 321 (1996)

    ADS  Article  Google Scholar 

  16. 16

    S. Sankararaman, G.I. Menon, P.B. Sunil Kumar, Phys. Rev. E 66, 031914 (2002)

    ADS  Article  Google Scholar 

  17. 17

    H.-Y. Chen, Phys. Rev. Lett. 92, 168101 (2004)

    ADS  Article  Google Scholar 

  18. 18

    H.-Y. Chen, A.S. Mikhailov, Phys. Rev. E 81, 031901 (2010)

    ADS  Article  Google Scholar 

  19. 19

    P.G. Saffman, M. Delbruck, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)

    ADS  Article  Google Scholar 

  20. 20

    H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)

    ADS  Article  Google Scholar 

  21. 21

    G. Marchioro, M. Pulvirenti, Commun. Math. Phys. 84, 483 (1982)

    MathSciNet  ADS  Article  MATH  Google Scholar 

  22. 22

    M. Leoni, T.B. Liverpool, Phys. Rev. Lett. 105, 238102 (2010)

    ADS  Article  Google Scholar 

  23. 23

    M.-J. Huang, R. Kapral, A.S. Mikhailov, H.-Y. Chen, J. Chem. Phys. 137, 055101 (2012)

    ADS  Article  Google Scholar 

  24. 24

    B.L. de Groot, H. Grubmüller, Science 294, 2353 (2001)

    ADS  Article  Google Scholar 

  25. 25

    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)

    Article  Google Scholar 

  26. 26

    C.M. Pooley, G.P. Alexander, Y.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007)

    ADS  Article  Google Scholar 

  27. 27

    A. Cressman, Y. Togashi, A.S. Mikhailov, R. Kapral, Phys. Rev. E 77, 050901 (2008)

    ADS  Article  Google Scholar 

  28. 28

    A.S. Mikhailov, D. Meinköhn, Self-motion in physico-chemical systems far from thermal equilibrium, in Stochastic Dynamics, edited by L. Schimansky-Geier, Th. Pöschel, Springer Lect. Notes Phys., Vol. 484 (Springer, Berlin, 1997) pp. 336-345

  29. 29

    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vahabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    ADS  Article  Google Scholar 

  30. 30

    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. (Garland, New York, 2002)

  31. 31

    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    ADS  Article  Google Scholar 

  32. 32

    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  33. 33

    Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Electronic supplementary material

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, MJ., Chen, HY. & Mikhailov, A.S. Nano-swimmers in biological membranes and propulsion hydrodynamics in two dimensions. Eur. Phys. J. E 35, 119 (2012). https://doi.org/10.1140/epje/i2012-12119-5

Download citation

Keywords

  • Regular Article - Topical issue: Active Matter