The European Physical Journal E

, 35:91

Instabilities in wormlike micelle systems

From shear-banding to elastic turbulence
Colloquium

Abstract

Shear-banding is ubiquitous in complex fluids. It is related to the organization of the flow into macroscopic bands bearing different viscosities and local shear rates and stacked along the velocity gradient direction. This flow-induced transition towards a heterogeneous flow state has been reported in a variety of systems, including wormlike micellar solutions, telechelic polymers, emulsions, clay suspensions, colloidal gels, star polymers, granular materials, or foams. In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In wormlike micelle solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Different candidates have been identified, the main ones being wall slip, interfacial instability between bands or bulk instability of one of the bands. In this review, we present experimental evidence for a purely elastic instability of the high shear rate band as the main origin for fluctuating shear-banding flows.

Keywords

Colloquium 

References

  1. 1.
    S. Manneville, A. Colin, G. Waton, F. Schosseler, Phys. Rev. E 75, 061502 (2007).ADSGoogle Scholar
  2. 2.
    J. Sprakel, E. Spruijt, M.A. Cohen Stuart, N.A.M. Besseling, M.P. Lettinga, J. van der Gucht, Soft Matter 4, 1696 (2008).ADSGoogle Scholar
  3. 3.
    P. Coussot, J.S. Raynaud, F. Bertrand, P. Moucheront, J.P. Guilbaud, H.T. Huynh, S. Jarny, D. Lesueur, Phys. Rev. Lett. 88, 218301 (2002).ADSGoogle Scholar
  4. 4.
    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 96, 138302 (2006).ADSGoogle Scholar
  5. 5.
    T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Phys. Rev. Lett. 104, 208301 (2010).ADSGoogle Scholar
  6. 6.
    W. Losert, L. Bocquet, T.C. Lubensky, J.P. Gollub, Phys. Rev. Lett. 85, 1428 (2000).ADSGoogle Scholar
  7. 7.
    C. Gilbreth, S. Sullivan, M. Dennin, Phys. Rev. E 74, 051406 (2006).ADSGoogle Scholar
  8. 8.
    P.D. Olmsted, Rheol. Acta 47, 283 (2008).Google Scholar
  9. 9.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, 1989).Google Scholar
  10. 10.
    T.C.B. McLeish, R.C. Ball, J. Polym. Sci. Part B: Polym. Phys. 24, 1735 (1986).ADSGoogle Scholar
  11. 11.
    T.C.B. McLeish, J. Polym. Sci. Part B: Polym. Phys. 25, 2253 (1987).ADSGoogle Scholar
  12. 12.
    J. Berret, Rheology of wormlike micelles: Equilibrium properties and shear banding transitions, in Molecular Gels, edited by R.G. Weiss, P. Terech (Springer, The Netherlands, 2006) pp. 667--720.Google Scholar
  13. 13.
    J.B. Salmon, A. Colin, S. Manneville, F. Molino, Phys. Rev. Lett. 90, 228303 (2003).ADSGoogle Scholar
  14. 14.
    G. Marrucci, J. Non-Newtonian Fluid Mech. 62, 279 (1996).Google Scholar
  15. 15.
    S.T. Milner, T.C.B. McLeish, A.E. Likhtman, J. Rheol. 45, 539 (2001).ADSGoogle Scholar
  16. 16.
    A.E. Likhtman, R.S. Graham, J. Non-Newtonian Fluid Mech. 114, 1 (2003).MATHGoogle Scholar
  17. 17.
    J.M. Adams, P.D. Olmsted, Phys. Rev. Lett. 102, 067801 (2009).ADSGoogle Scholar
  18. 18.
    S.Q. Wang, Phys. Rev. Lett. 103, 219801 (2009).ADSGoogle Scholar
  19. 19.
    J.M. Adams, P.D. Olmsted, Phys. Rev. Lett. 103, 219801 (2009).ADSGoogle Scholar
  20. 20.
    M.E. Cates, W.C.K. Poon, P. Bartlett, Philos. Trans. R. Soc. A, Math. Phys. Engin. Sci. 367, 4989 (2009).ADSGoogle Scholar
  21. 21.
    P. Coussot, G. Ovarlez, Europhys. J. E 33, 183 (2010).Google Scholar
  22. 22.
    K. Martens, L. Bocquet, J.-L. Barrat, Soft Matter 8, 4197 (2012).ADSGoogle Scholar
  23. 23.
    T. Divoux, C. Barentin, S. Manneville, Soft Matter 7, 8409 (2011).ADSGoogle Scholar
  24. 24.
    T. Divoux, C. Barentin, S. Manneville, Soft Matter 7, 9335 (2011).ADSGoogle Scholar
  25. 25.
    T. Divoux, D. Tamarii, C. Barentin, S. Teitel, S. Manneville, Soft Matter 8, 4151 (2012).ADSGoogle Scholar
  26. 26.
    G. Ovarlez, K. Krishan, S. Cohen-Addad, EPL 91, 68005 (2010).ADSGoogle Scholar
  27. 27.
    T. Gibaud, C. Barentin, S. Manneville, Phys. Rev. Lett. 101, 258302 (2008).ADSGoogle Scholar
  28. 28.
    T. Gibaud, C. Barentin, N. Taberlet, S. Manneville, Soft Matter 5, 3026 (2009).ADSGoogle Scholar
  29. 29.
    R.L. Moorcroft, M.E. Cates, S.M. Fielding, Phys. Rev. Lett. 106, 055502 (2011).ADSGoogle Scholar
  30. 30.
    M.E. Cates, S.M. Fielding, Adv. Phys. 55, 799 (2006).ADSGoogle Scholar
  31. 31.
    S. Lerouge, J.-F. Berret, Shear-induced transitions and instabilities in surfactant wormlike micelles in Polymer Characterization, Vol. 230 of Advances in Polymer Science, edited by K. Dusek, J.-F. Joanny (Springer, Berlin/Heidelberg, 2010) pp. 1--71.Google Scholar
  32. 32.
    S.J. Candau, E. Hirsch, R. Zana, J. Colloid Interface Sci. 105, 521 (1985).Google Scholar
  33. 33.
    S.J. Candau, E. Hirsch, R. Zana, J. Phys. 45, 1263 (1984).Google Scholar
  34. 34.
    S.J. Candau, E. Hirsch, R. Zana, M. Adam, J. Colloid Interface Sci. 122, 430 (1988).Google Scholar
  35. 35.
    M.E. Cates, J. Phys. Chem. 94, 371 (1990).Google Scholar
  36. 36.
    M.E. Cates, J. Phys. 49, 1593 (1988).Google Scholar
  37. 37.
    M.E. Cates, S.J. Candau, J. Phys.: Condens. Matter 2, 6869 (1990).ADSGoogle Scholar
  38. 38.
    H. Rehage, H. Hoffmann, Mol. Phys. 74, 933 (1991).ADSGoogle Scholar
  39. 39.
    M.R. Lopez-Gonzalez, W.M. Holmes, P.T. Callaghan, P.J. Photinos, Phys. Rev. Lett. 93, 268302 (2004).ADSGoogle Scholar
  40. 40.
    L. Bécu, D. Anache, S. Manneville, A. Colin, Phys. Rev. E 76, 011503 (2007).ADSGoogle Scholar
  41. 41.
    J.-F. Berret, D.C. Roux, G. Porte, P. Lindner, Europhys. Lett. 25, 521 (1994).ADSGoogle Scholar
  42. 42.
    V. Schmitt, F. Lequeux, A. Pousse, D. Roux, Langmuir 10, 955 (1994).Google Scholar
  43. 43.
    J.-F. Berret, D.C. Roux, G. Porte, J. Phys. II 4, 1261 (1994).Google Scholar
  44. 44.
    P.T. Callaghan, M.E. Cates, C.J. Rofe, J.B.A.F. Smeulders, J. Phys. II 6, 375 (1996).Google Scholar
  45. 45.
    J.P. Decruppe, R. Cressely, R. Makhloufi, E. Cappelaere, Colloid Polym. Sci. 273, 346 (1995).Google Scholar
  46. 46.
    R. Makhloufi, J.P. Decruppe, A. Ait-Ali, R. Cressely, Europhys. Lett. 32, 253 (1995).ADSGoogle Scholar
  47. 47.
    V. Schmitt, F. Lequeux, J. Phys. II 5, 193 (1995).Google Scholar
  48. 48.
    S. Manneville, Rheol. Acta 47, 301 (2008).Google Scholar
  49. 49.
    P.T. Callaghan, Rheol. Acta 47, 243 (2008).Google Scholar
  50. 50.
    S.M. Fielding, Soft Matter 3, 1262 (2007).ADSGoogle Scholar
  51. 51.
    W.M. Holmes, M.R. Lopez-Gonzalez, P.T. Callaghan, Europhys. Lett. 64, 274 (2003).ADSGoogle Scholar
  52. 52.
    M.R. Lopez-Gonzalez, W.M. Holmes, P.T. Callaghan, Soft Matter 2, 855 (2006).ADSGoogle Scholar
  53. 53.
    R. Bandyopadhyay, G. Basappa, A.K. Sood, Phys. Rev. Lett. 84, 2022 (2000).ADSGoogle Scholar
  54. 54.
    R. Bandyopadhyay, A.K. Sood, Europhys. Lett. 56, 447 (2001).ADSGoogle Scholar
  55. 55.
    R. Bandyopadhyay, A.K. Sood, Langmuir 19, 3121 (2003).Google Scholar
  56. 56.
    R. Ganapathy, A.K. Sood, Phys. Rev. Lett. 96, 108301 (2006).ADSGoogle Scholar
  57. 57.
    R. Ganapathy, A.K. Sood, Langmuir 22, 11016 (2006).Google Scholar
  58. 58.
    R. Ganapathy, A.K. Sood, J. Non-Newtonian Fluid Mech. 149, 78 (2008).MATHGoogle Scholar
  59. 59.
    S. Lerouge, J.P. Decruppe, J.-F. Berret, Langmuir 16, 6464 (2000).Google Scholar
  60. 60.
    J.P. Decruppe, S. Lerouge, J.-F. Berret, Phys. Rev. E 63, 022501 (2001).ADSGoogle Scholar
  61. 61.
    P.T. Callaghan, Curr. Opin. Colloid Interface Sci. 11, 13 (2006).Google Scholar
  62. 62.
    M.P. Lettinga, S. Manneville, Phys. Rev. Lett. 103, 248302 (2009).ADSGoogle Scholar
  63. 63.
    S. Manneville, L. Bécu, A. Colin, Eur. Phys. J. AP 28, 361 (2004).ADSGoogle Scholar
  64. 64.
    L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 93, 018301 (2004).ADSGoogle Scholar
  65. 65.
    E. Fischer, P.T. Callaghan, Europhys. Lett. 50, 803 (2000).ADSGoogle Scholar
  66. 66.
    P. Fischer, E.K. Wheeler, G.G. Fuller, Rheol. Acta 41, 35 (2002).Google Scholar
  67. 67.
    K. Feindel, P. Callaghan, Rheol. Acta 49, 1003 (2010).Google Scholar
  68. 68.
    N.A. Spenley, M.E. Cates, T.C.B. McLeish, Phys. Rev. Lett. 71, 939 (1993).ADSGoogle Scholar
  69. 69.
    N.A. Spenley, X.F. Yuan, M.E. Cates, J. Phys. II 6, 551 (1996).Google Scholar
  70. 70.
    P.D. Olmsted, C.Y.D. Lu, Phys. Rev. E 56, R55 (1997).ADSGoogle Scholar
  71. 71.
    P.D. Olmsted, O. Radulescu, C.Y.D. Lu, J. Rheol. 44, 257 (2000).ADSGoogle Scholar
  72. 72.
    P.D. Olmsted, P. Goldbart, Phys. Rev. A 41, 4578 (1990).ADSGoogle Scholar
  73. 73.
    J.K.G. Dhont, Phys. Rev. E 60, 4534 (1999).ADSGoogle Scholar
  74. 74.
    P.D. Olmsted, Curr. Opin. Colloid Interface Sci. 4, 95 (1999).Google Scholar
  75. 75.
    O. Radulescu, P.D. Olmsted, C.Y.D. Lu, Rheol. Acta 38, 606 (1999).Google Scholar
  76. 76.
    X.F. Yuan, Europhys. Lett. 46, 542 (1999).ADSGoogle Scholar
  77. 77.
    C.Y.D. Lu, P.D. Olmsted, R.C. Ball, Phys. Rev. Lett. 84, 642 (2000).ADSGoogle Scholar
  78. 78.
    O. Radulescu, P.D. Olmsted, J. Non-Newtonian Fluid Mech. 91, 143 (2000).MATHGoogle Scholar
  79. 79.
    K. Sato, X. Yuan, T. Kawakatsu, Eur. Phys. J. E 31, 135 (2010).Google Scholar
  80. 80.
    C. Masselon, A. Colin, P.D. Olmsted, Phys. Rev. E 81, 021502 (2010).ADSGoogle Scholar
  81. 81.
    M.A. Fardin, T.J. Ober, C. Gay, G. Grégoire, G.H. McKinley, S. Lerouge, Soft Matter 8, 910 (2012).ADSGoogle Scholar
  82. 82.
    S.M. Fielding, P.D. Olmsted, Phys. Rev. Lett. 92, 084502 (2004).ADSGoogle Scholar
  83. 83.
    J.M. Adams, S.M. Fielding, P.D. Olmsted, J. Non-Newtonian Fluid Mech. 151, 101 (2008).MATHGoogle Scholar
  84. 84.
    S.M. Fielding, Phys. Rev. Lett. 95, 134501 (2005).ADSGoogle Scholar
  85. 85.
    S.M. Fielding, P.D. Olmsted, Phys. Rev. Lett. 96, 104502 (2006).ADSGoogle Scholar
  86. 86.
    H.J. Wilson, Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 364, 3267 (2006).ADSMATHGoogle Scholar
  87. 87.
    S.M. Fielding, Phys. Rev. E 76, 016311 (2007).ADSGoogle Scholar
  88. 88.
    J.B. Salmon, S. Manneville, A. Colin, Phys. Rev. E 68, 051503 (2003).ADSGoogle Scholar
  89. 89.
    J.B. Salmon, S. Manneville, A. Colin, Phys. Rev. E 68, 051504 (2003).ADSGoogle Scholar
  90. 90.
    S. Manneville, J.B. Salmon, A. Colin, Eur. Phys. J. E 13, 197 (2004).Google Scholar
  91. 91.
    S. Lerouge, M. Argentina, J.P. Decruppe, Phys. Rev. Lett. 96, 088301 (2006).ADSGoogle Scholar
  92. 92.
    M.M. Britton, P.T. Callaghan, J. Rheol. 41, 1365 (1997).ADSGoogle Scholar
  93. 93.
    M.M. Britton, P.T. Callaghan, Phys. Rev. Lett. 78, 4930 (1997).ADSGoogle Scholar
  94. 94.
    M.M. Britton, P.T. Callaghan, Eur. Phys. J. B 7, 237 (1999).ADSGoogle Scholar
  95. 95.
    R.W. Mair, P.T. Callaghan, Europhys. Lett. 36, 719 (1996).ADSGoogle Scholar
  96. 96.
    R.W. Mair, P.T. Callaghan, J. Rheol. 41, 901 (1997).ADSGoogle Scholar
  97. 97.
    E. Fischer, P.T. Callaghan, Phys. Rev. E 64, 011501 (2001).ADSGoogle Scholar
  98. 98.
    S. Lerouge, J.P. Decruppe, P. Olmsted, Langmuir 20, 11355 (2004).Google Scholar
  99. 99.
    J.Y. Lee, G.G. Fuller, N.E. Hudson, X.F. Yuan, J. Rheol. 49, 537 (2005).ADSGoogle Scholar
  100. 100.
    Y.T. Hu, A. Lips, J. Rheol. 49, 1001 (2005).ADSGoogle Scholar
  101. 101.
    M.M. Britton, R.W. Mair, R.K. Lambert, P.T. Callaghan, J. Rheol. 43, 897 (1999).ADSGoogle Scholar
  102. 102.
    A.F. Mendez-Sanchez, J. Perez-Gonzalez, L. de Vargas, J.R. Castrejon-Pita, A.A. Castrejon-Pita, G. Huelsz, J. Rheol. 47, 1455 (2003).ADSGoogle Scholar
  103. 103.
    C. Masselon, J.B. Salmon, A. Colin, Phys. Rev. Lett. 1, 38301 (2008).Google Scholar
  104. 104.
    P. Nghe, S.M. Fielding, P. Tabeling, A. Ajdari, Phys. Rev. Lett. 104, 248303 (2010).ADSGoogle Scholar
  105. 105.
    G.G. Fuller, Optical Rheometry of Complex Fluids, chapter Rheology of wormlike micelles: equilibrium properties and shear-banding transition (Oxford University Press, New York, 1995).Google Scholar
  106. 106.
    S. Lerouge, M.A. Fardin, M. Argentina, G. Grégoire, O. Cardoso, Soft Matter 4, 1808 (2008).ADSGoogle Scholar
  107. 107.
    M.A. Fardin, B. Lasne, O. Cardoso, G. Grégoire, M. Argentina, J.P. Decruppe, S. Lerouge, Phys. Rev. Lett. 103, 028302 (2009).ADSGoogle Scholar
  108. 108.
    M.A. Fardin, T.J. Ober, V. Grenard, T. Divoux, S. Manneville, G.H. McKinley, S. Lerouge, to be published in Soft Matter, DOI:10.1039/C2SM26313K.
  109. 109.
    B.A. Schubert, N.J. Wagner, E.W. Kaler, S.R. Raghavan, Langmuir 20, 3564 (2004).Google Scholar
  110. 110.
    I.A. Kadoma, J.W. van Egmond, Phys. Rev. Lett. 76, 4432 (1996).ADSGoogle Scholar
  111. 111.
    E.K. Wheeler, P. Izu, G.G. Fuller, Rheol. Acta 35, 139 (1996).Google Scholar
  112. 112.
    I.A. Kadoma, J.W. van Egmond, Langmuir 13, 4551 (1997).Google Scholar
  113. 113.
    I.A. Kadoma, C. Ylitalo, J.W. van Egmond, Rheol. Acta 36, 1 (1997).Google Scholar
  114. 114.
    I.A. Kadoma, J.W. van Egmond, Phys. Rev. Lett. 80, 5679 (1998).ADSGoogle Scholar
  115. 115.
    B.M. Baumert, S.J. Muller, Phys. Fluids 9, 566 (1997).MathSciNetADSMATHGoogle Scholar
  116. 116.
    B.M. Baumert, S.J. Muller, J. Non-Newtonian Fluid Mech. 83, 33 (1999).MATHGoogle Scholar
  117. 117.
    A. Groisman, V. Steinberg, Phys. Rev. Lett. 78, 1460 (1997).ADSGoogle Scholar
  118. 118.
    A. Groisman, V. Steinberg, Europhys. Lett. 43, 165 (1998).ADSGoogle Scholar
  119. 119.
    T. Shikata, H. Hirata, E. Takatori, K. Osaki, J. Non-Newtonian Fluid Mech. 28, 171 (1988).Google Scholar
  120. 120.
    J.-F. Berret, Langmuir 13, 2227 (1997).Google Scholar
  121. 121.
    C. Grand, J. Arrault, M.E. Cates, J. Phys. II 7, 1071 (1997).Google Scholar
  122. 122.
    T. Shikata, S.J. Dahman, D.S. Pearson, Langmuir 10, 3470 (1994).Google Scholar
  123. 123.
    S. Lerouge, J.P. Decruppe, C. Humbert, Phys. Rev. Lett. 81, 5457 (1998).ADSGoogle Scholar
  124. 124.
    J.F.A. Soltero, F. Bautista, J.E. Puig, O. Manero, Langmuir 15, 1604 (1999).Google Scholar
  125. 125.
    P. Pimenta, E.E. Pashkovski, Langmuir 22, 3980 (2006).Google Scholar
  126. 126.
    J.-F. Berret, G. Porte, Phys. Rev. E 60, 4268 (1999).ADSGoogle Scholar
  127. 127.
    Suzanne M. Fielding, Phys. Rev. Lett. 104, 198303 (2010).ADSGoogle Scholar
  128. 128.
    A. Nicolas, A.N. Morozov, Phys. Rev. Lett. 108, 088302 (2012).ADSGoogle Scholar
  129. 129.
    C.D. Andereck, S.S. Liu, H.L. Swinney, J. Fluid Mech. 164, 155 (1986).ADSGoogle Scholar
  130. 130.
    N. Abcha, N. Latrache, F. Dumouchel, I. Mutabazi, Exp. Fluids 45, 85 (2008).Google Scholar
  131. 131.
    E. Miller, J.P. Rothstein, J. Non-Newtonian Fluid Mech. 143, 22 (2007).Google Scholar
  132. 132.
    M.W. Liberatore, F. Nettesheim, P.A. Vasquez, M.E. Helgeson, N.J. Wagner, E.W. Kaler, L.P. Cook, L. Porcar, Y.T. Hu, J. Rheol. 53, 441 (2009).ADSGoogle Scholar
  133. 133.
    M.E. Helgeson, P.A. Vasquez, E.W. Kaler, N.J. Wagner, J. Rheol. 53, 727 (2009).ADSGoogle Scholar
  134. 134.
    M.E. Helgeson, M.D. Reichert, Y.T. Hu, N.J. Wagner, Soft Matter 5, 3858 (2009).ADSGoogle Scholar
  135. 135.
    M.A. Fardin, T. Divoux, M.A. Guedeau-Boudeville, I. Buchet-Maulien, J. Browaeys, G.H. McKinley, S. Manneville, S. Lerouge, Soft Matter 8, 2535 (2012).ADSGoogle Scholar
  136. 136.
    J.P. Decruppe, O. Greffier, S. Manneville, S. Lerouge, Phys. Rev. E 73, 061509 (2006).ADSGoogle Scholar
  137. 137.
    A. Raudsepp, P.T. Callaghan, Soft Matter 4, 784 (2008).ADSGoogle Scholar
  138. 138.
    R. Larson, E.S.G. Shaqfeh, S.J. Mueller, J. Fluid Mech. 218, 573 (1990).MathSciNetADSMATHGoogle Scholar
  139. 139.
    R.G. Larson, Rheol. Acta 31, 213 (1992).Google Scholar
  140. 140.
    P. Pakdel, G.H. McKinley, Phys. Rev. Lett. 77, 2459 (1996).ADSGoogle Scholar
  141. 141.
    A. Groisman, V. Steinberg, Phys. Fluids 10, 2451 (1998).ADSGoogle Scholar
  142. 142.
    A.N. Morozov, W. van Saarloos, Phys. Rep. 447, 112 (2007).MathSciNetADSGoogle Scholar
  143. 143.
    A. Groisman, V. Steinberg, Nature 405, 53 (2000).ADSGoogle Scholar
  144. 144.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics (Dover Publications, 1981).Google Scholar
  145. 145.
    H. Giesekus, Rheol. Acta 5, 239 (1966).MATHGoogle Scholar
  146. 146.
    H. Giesekus, Progr. Heat Mass Trans. 5, 187 (1972).Google Scholar
  147. 147.
    B.M. Baumert, S.J. Muller, Rheol. Acta 34, 147 (1995).Google Scholar
  148. 148.
    E.S.G. Shaqfeh, Annu. Rev. Fluid Mech. 28, 129 (1996).MathSciNetADSGoogle Scholar
  149. 149.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1988).Google Scholar
  150. 150.
    J.M. Dealy, Rheol. Bul. 79, 2 (2010).Google Scholar
  151. 151.
    S.J. Muller, Korea-Australia Rheol. J. 20, 117 (2008).Google Scholar
  152. 152.
    R.G. Larson, Nature 405, 27 (2000).Google Scholar
  153. 153.
    A. Groisman, V. Steinberg, New J. Phys. 6, 29 (2004).ADSGoogle Scholar
  154. 154.
    V. Steinberg, Scholarpedia 3, 5476 (2008).Google Scholar
  155. 155.
    A. Groisman, V. Steinberg, Phys. Rev. Lett. 77, 1480 (1996).ADSGoogle Scholar
  156. 156.
    N. Phan-Tien, J. Non-Newtonian Fluid Mech. 13, 325 (1983).Google Scholar
  157. 157.
    G.H. McKinley, J.A. Byars, R.A. Brown, R.C. Armstrong, J. Non-Newtonian Fluid Mech. 40, 201 (1991).MATHGoogle Scholar
  158. 158.
    T. Burghelea, E. Segre, V. Steinberg, Phys. Fluids 19, 053104 (2007).ADSGoogle Scholar
  159. 159.
    G.H. McKinley, P. Pakdel, A. Oztekin, J. Non-Newtonian Fluid Mech. 67, 19 (1996).Google Scholar
  160. 160.
    Y.L. Joo, E.S.G. Shaqfeh, Phys. Fluids A: Fluid Dyn. 3, 2043 (1991).ADSMATHGoogle Scholar
  161. 161.
    Y. Jun, V. Steinberg, Phys. Rev. Lett. 102, 124503 (2009).ADSGoogle Scholar
  162. 162.
    G.H. McKinley, R.C. Armstrong, R.A. Brown, Philos. Trans. R. Soc. London, Ser. A: Phys. Engin. Sci. 344, 265 (1993).ADSGoogle Scholar
  163. 163.
    G.H. McKinley, W.P. Raiford, R.A. Brown, R.C. Armstrong, J. Fluid Mech. 223, 411 (1991).ADSGoogle Scholar
  164. 164.
    M. Avgousti, A.N. Beris, J. Non-Newtonian Fluid Mech. 50, 225 (1993).MATHGoogle Scholar
  165. 165.
    R. Sureshkumar, A.N. Beris, M. Avgousti, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 447, 135 (1994).ADSMATHGoogle Scholar
  166. 166.
    Y.L. Joo, E.S.G. Shaqfeh, J. Fluid Mech. 262, 27 (1994).ADSGoogle Scholar
  167. 167.
    D.G. Thomas, U.A. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, J. Non-Newtonian Fluid Mech. 138, 111 (2006).MATHGoogle Scholar
  168. 168.
    D.G. Thomas, B. Khomami, R. Sureshkumar, J. Fluid Mech. 620, 353 (2009).ADSMATHGoogle Scholar
  169. 169.
    R.G. Larson, S.J. Muller, E.S.G. Shaqfeh, J. Non-Newtonian Fluid Mech. 51, 195 (1994).Google Scholar
  170. 170.
    O. Crumeyrolle, I. Mutabazi, M. Grisel, Phys. Fluids 14, 1681 (2002).ADSGoogle Scholar
  171. 171.
    O. Crumeyrolle, N. Latrache, I. Mutabazi, A.B. Ezersky, J. Phys.: Conf. Ser. 14, 78 (2005).ADSGoogle Scholar
  172. 172.
    M.A. Fardin, D. Lopez, J. Croso, G. Grégoire, O. Cardoso, G.H. McKinley, S. Lerouge, Phys. Rev. Lett. 104, 178303 (2010).ADSGoogle Scholar
  173. 173.
    K.A. Kumar, M.D. Graham, J. Fluid Mech. 443, 301 (2001).ADSMATHGoogle Scholar
  174. 174.
    D.G. Thomas, U.A. Al-Mubaiyedh, R. Sureshkumar, B. Khomami, J. Non-Newtonian Fluid Mech. 138, 111 (2006).MATHGoogle Scholar
  175. 175.
    A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003).ADSGoogle Scholar
  176. 176.
    T. Burghelea, E. Segre, V. Steinberg, Europhys. Lett. 68, 529 (2004).ADSGoogle Scholar
  177. 177.
    T. Burghelea, E. Segre, V. Steinberg, Phys. Fluids 17, 103101 (2005).ADSGoogle Scholar
  178. 178.
    T. Burghelea, E. Segre, V. Steinberg, Phys. Rev. Lett. 96, 214502 (2006).ADSGoogle Scholar
  179. 179.
    V. Steinberg, C. R. Phys. 10, 728 (2009).ADSGoogle Scholar
  180. 180.
    P. Fischer, H. Rehage, Rheol. Acta 36, 13 (1997).Google Scholar
  181. 181.
    S. Majumdar, A.K. Sood, Phys. Rev. E 84, 015302 (2011).ADSGoogle Scholar
  182. 182.
    F.H. Busse, Topics in Applied Physics, chapter Transition to turbulence in Rayleigh-Bénard convection: Hydrodynamics instabilities and the transition to turbulence (Springer, New York, 1981).Google Scholar
  183. 183.
    J.-F. Berret, G. Porte, J.P. Decruppe, Phys. Rev. E 55, 1668 (1997).ADSGoogle Scholar
  184. 184.
    G. Porte, J.-F. Berret, J.L. Harden, J. Phys. II 7, 459 (1997).Google Scholar
  185. 185.
    S. Manneville, J.B. Salmon, L. Bécu, A. Colin, F. Molino, Rheol. Acta 43, 408 (2004).Google Scholar
  186. 186.
    P. Ballesta, M.P. Lettinga, S. Manneville, J. Rheol. 51, 1047 (2007).ADSGoogle Scholar
  187. 187.
    R.E. Khayat, J. Fluid Mech. 400, 33 (1999).MathSciNetADSMATHGoogle Scholar
  188. 188.
    M.A. Fardin, T.J. Ober, C. Gay, G. Grégoire, G.H. McKinley, S. Lerouge, EPL 96, 44004 (2011).ADSGoogle Scholar
  189. 189.
    E. Cappelaere, R. Cressely, J. Colloid Polym. Sci. 275, 407 (1997).Google Scholar
  190. 190.
    B. Lasne, Thèse de Doctorat, Université Paris-Diderot (2010). .Google Scholar
  191. 191.
    A.W. El-Kareh, L.G. Leal, J. Non-Newtonian Fluid Mech. 33, 257 (1989).MATHGoogle Scholar
  192. 192.
    V. Schmitt, C.M. Marques, F. Lequeux, Phys. Rev. E 52, 4009 (1995).ADSGoogle Scholar
  193. 193.
    S.M. Fielding, P.D. Olmsted, Eur. Phys. J. E 11, 65 (2003).Google Scholar
  194. 194.
    P.D. Olmsted, Europhys. Lett. 48, 339 (1999).ADSGoogle Scholar
  195. 195.
    O. Radulescu, P.D. Olmsted, J.P. Decruppe, S. Lerouge, J.-F. Berret, G. Porte, Europhys. Lett. 62, 230 (2003).ADSGoogle Scholar
  196. 196.
    J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet, Nature 454, 84 (2008).ADSGoogle Scholar
  197. 197.
    R.G. Larson, Constitutive Equations for Polymer Melt and Solutions (Butterworth-Heinemann, 1988).Google Scholar
  198. 198.
    M. Cromer, L.P. Cook, G.H. McKinley, J. Non-Newtonian Fluid Mech. 166, 566 (2011).MATHGoogle Scholar
  199. 199.
    A. Groisman, V. Steinberg, Phys. Rev. Lett. 86, 934 (2001).ADSGoogle Scholar
  200. 200.
    S. Gerashchenko, C. Chevallard, V. Steinberg, Europhys. Lett. 71, 221 (2005).ADSGoogle Scholar
  201. 201.
    Y. Liu, V. Steinberg, EPL 90, 44002 (2010).ADSGoogle Scholar
  202. 202.
    Y. Liu, V. Steinberg, EPL 90, 44005 (2010).ADSGoogle Scholar
  203. 203.
    P.A. Stone, S.D. Hudson, P. Dalhaimer, D.E. Discher, E.J. Amis, K.B. Migler, Macromolecules 39, 7144 (2006).ADSGoogle Scholar
  204. 204.
    S.J. Haward, T.J. Ober, M.S.N. Oliveira, M.A. Alves, G.H. McKinley, Soft Matter 8, 536 (2012).ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes ComplexesCNRS UMR 7057-Université Paris DiderotParis Cédex 13France
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.The Academy of BradylogistsParisFrance

Personalised recommendations