Active compaction of crosslinked driven filament networks

Abstract

The contractile ability of active materials relies on the interplay of force-exerting and force-bearing structures. However, the complexity of interactions and limited parameter control of many model systems are major obstacles in advancing our understanding of the underlying fundamental principles. To shed light on these principles we introduce and analyse a minimal reconstituted system, consisting of highly concentrated actin filaments that are crosslinked by α-actinin and actively transported in the two-dimensional geometry of a motility assay. This minimal system actively compacts and evolves into highly compact fibres that exceed the length of the individual filaments by two orders of magnitude. We identify the interplay between active transport and crosslinking to be responsible for the observed active compaction. This enables us to control the structure and the length scale of active compaction.

This is a preview of subscription content, log in to check access.

References

  1. 1

    T.E. Kreis, W. Birchmeier, Cell 22, 555 (1980)

    Article  Google Scholar 

  2. 2

    J.M. Sanger et al., Cell Motil. Cytoskel. 7, 209 (1987)

    Article  Google Scholar 

  3. 3

    A.S. Maddox et al., Develop. Cell 12, 827 (2007)

    Article  Google Scholar 

  4. 4

    A.B. Verkhovsky, G.G. Borisy, J. Cell Biol. 123, 637 (1993)

    Article  Google Scholar 

  5. 5

    N.A. Medeiros, D.T. Burnette, P. Forscher, Nature Cell Biol. 8, 215 (2006)

    Article  Google Scholar 

  6. 6

    P. Lenart et al., Nature 436, 812 (2005)

    ADS  Article  Google Scholar 

  7. 7

    K. Kruse et al., Phys. Rev. Lett. 92, 078101 (2004)

    ADS  Article  Google Scholar 

  8. 8

    T.B. Liverpool et al., EPL 85, 18007 (2009)

    ADS  Article  Google Scholar 

  9. 9

    J.-F. Joanny, J. Prost, HFSP (Hum. Front. Sci. Prog.) J. 3, 94 (2009)

    Google Scholar 

  10. 10

    T. Guerin et al., Curr. Opin. Cell Biol. 22, 14 (2010)

    Article  Google Scholar 

  11. 11

    D. Mizuno et al., Science 315, 370 (2007)

    ADS  Article  Google Scholar 

  12. 12

    D.A. Fletcher, P.L. Geissler, Annu. Rev. Phys. Chem. 60, 469 (2009)

    ADS  Article  Google Scholar 

  13. 13

    L.P. Cramer, M. Siebert, T.J. Mitchison, J. Cell Biol. 136, 1287 (1997)

    Article  Google Scholar 

  14. 14

    M.M.M. Mori et al., Curr. Biol. 21, 606 (2011)

    Article  Google Scholar 

  15. 15

    P.M. Bendix et al., Biophys. J. 94, 3126 (2008)

    ADS  Article  Google Scholar 

  16. 16

    S. Koehler, V. Schaller, A.R. Bausch, Nat. Mater. 10, 462 (2011)

    ADS  Article  Google Scholar 

  17. 17

    M.S.E. Silva et al., Proc. Natl. Acad. Sci. U.S.A. 108, 9408 (2011)

    ADS  Article  Google Scholar 

  18. 18

    F. Backouche et al., Phys. Biol. 3, 264 (2006)

    ADS  Article  Google Scholar 

  19. 19

    G.H. Koenderink et al., Proc. Natl. Acad. Sci. U.S.A. 106, 15192 (2009)

    ADS  Article  Google Scholar 

  20. 20

    T. Thoresen, M. Lenz, M.L. Gardel, Biophys. J. 100, 2698 (2011)

    ADS  Article  Google Scholar 

  21. 21

    K. Takiguchi, J. Biochem. 109, 520 (1991)

    Google Scholar 

  22. 22

    J.A. Spudich, S. Watt, J. Biol. Chem. 246, 4866 (1971)

    Google Scholar 

  23. 23

    S. MacLean-Fletcher, T.D. Pollard, Biochem. Biophys. Res. Commun. 96, 18 (1980)

    Article  Google Scholar 

  24. 24

    S.S. Margossian, S. Lowey, Meth. Enzymol. 85, 55 (1982)

    Article  Google Scholar 

  25. 25

    S.W. Craig, C.L. Lancashire, J.A. Cooper, Meth. Enzymol. 85, 316 (1982)

    Article  Google Scholar 

  26. 26

    J. Schilling, E. Sackmann, A.R. Bausch, Rev. Sci. Instrum. 75, 2822 (2004)

    ADS  Article  Google Scholar 

  27. 27

    R.C. Arevalo, J.S. Urbach, D.L. Blair, Biophys. J. 99, L65 (2010)

    Article  Google Scholar 

  28. 28

    E.A. Cowen, J.K. Sveen, in PIV and Water Waves, edited by J. Grue, P.L.F. Liu, G.K. Pedersen (World Scientific Publishing, Singapore, 2003)

  29. 29

    K.M. Schmoller et al., Biophys. J. 101, 803 (2011)

    ADS  Article  Google Scholar 

  30. 30

    T. Butt et al., J. Biol. Chem. 285, 4964 (2010)

    Article  Google Scholar 

  31. 31

    V. Schaller et al., Nature 467, 73 (2010)

    ADS  Article  Google Scholar 

  32. 32

    M. Edlund, M.A. Lotano, C.A. Otey, Cell Motil. Cytoskel. 48, 190 (2001)

    Article  Google Scholar 

  33. 33

    S. Ebashi, F. Ebashi, J. Biochem. 58, 7 (1965)

    Google Scholar 

  34. 34

    B. Sjoeblom, A. Salmazo, K. Djinovic-Carugo, Cell. Mol. Life Sci. 65, 2688 (2008)

    Article  Google Scholar 

  35. 35

    D.S. Courson, R.S. Rock, J. Biol. Chem. 285, 26350 (2010)

    Article  Google Scholar 

  36. 36

    O. Lieleg et al., Soft Matter 5, 1796 (2009)

    ADS  Article  Google Scholar 

  37. 37

    K.M. Schmoller et al., Nat. Commun. 1, 134 (2010)

    ADS  Article  Google Scholar 

  38. 38

    V. Schaller et al., Proc. Natl. Acad. Sci. U.S.A. 108, 19183 (2011)

    ADS  Article  Google Scholar 

  39. 39

    T.P. Stossel et al., Nat. Rev. Molec. Cell Biol. 2, 138 (2001)

    Article  Google Scholar 

  40. 40

    Y.Y. Feng, C.A. Walsh, Nat. Cell Biol. 6, 1034 (2004)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schaller, V., Hammerich, B. & Bausch, A.R. Active compaction of crosslinked driven filament networks. Eur. Phys. J. E 35, 81 (2012). https://doi.org/10.1140/epje/i2012-12081-2

Download citation

Keywords

  • Topical contribution