Skip to main content

Microrheological consequences of attractive colloid-colloid potentials in a two-dimensional Brownian fluid

Abstract

By using microrheological methods commonly employed in videomicroscopy experiments, we study the rheology of a two-dimensional computational fluid formed by Brownian disks with the aim of exploring the influence of some effective colloid-colloid attractive interactions. The model of fluid is developed by Brownian dynamics simulations without hydrodynamical interactions, and it is characterized by calculating its equation of state from the pair distribution function. Micromechanical properties, relative and intrinsic viscosity and freezing are discussed. Then, we include attractive forces such a Asakura-Oosawa depletion force or an empiric expression proposed by Grier and Hal (GH) for an anomalous electrostatic potential observed in confined and charged colloids. By using both potentials, viscosity is clearly increased, but when the GH potential is included, viscoelastic gel state is reached for intermediate values of surface concentration. Finally, we analyse the influence of the attractive potentials in the breaking-up by thermal fluctuations of linear chains formed by 2D particles, finding that the GH potential reduces the characteristical time at which the disks can be considered as disaggregated. In this work, we employ an experimental-like methodology for the study of a Brownian hard-disk fluid, providing a very useful link with experimental procedures.

This is a preview of subscription content, access via your institution.

References

  1. W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989).

  2. J. Mewis, N.J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, 2012).

  3. D. Boal, Mechanics of the Cell (Cambridge University Press, 2002).

  4. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science, 1006 (2002).

  5. A.H. Marcus, B. Lin, S.A. Rice, Phys. Rev. E 53, 1765 (1996).

    Article  ADS  Google Scholar 

  6. C. Bechinger, Curr. Opin. Colloid Interface Sci. 7, 204 (2002).

    Article  Google Scholar 

  7. P. Cicuta, E.J. Stancik, G.G. Fuller, Phys. Rev. Lett. 90, 236101 (2003).

    Article  ADS  Google Scholar 

  8. S. Reynaert, P. Moldenaers, J. Vermant, Phys. Chem. Chem. Phys. 9, 6463 (2007).

    Article  Google Scholar 

  9. L.J. Bonales, J.E.F. Rubio, H. Ritacco, C. Vega, R.G. Rubio, F. Ortega, Langmuir 27, 3391 (2011).

    Article  Google Scholar 

  10. A. Mulero, C.A. Galán, M.I. Parra, F. Cuadros, Lect. Notes Phys. 753, 37 (2008).

    Article  ADS  Google Scholar 

  11. A.C. Mirus, H. Weber, D. Marx, Phys. Rev. E 55, 6855 (1997).

    Article  ADS  Google Scholar 

  12. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).

    Article  ADS  MATH  Google Scholar 

  13. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forro, S. Jeney, Nature 478, 85 (2011).

    Article  ADS  Google Scholar 

  14. M.A. Bevan, S.L. Eichmann, Curr. Opin. Colloid Interface Sci. 16, 149 (2011).

    Article  Google Scholar 

  15. J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996).

    Article  Google Scholar 

  16. F. Ortega, H. Ritacco, R.G. Rubio, Curr. Opin. Colloid Interface Sci. 15, 237 (2010).

    Article  Google Scholar 

  17. T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995).

    Article  ADS  Google Scholar 

  18. T.G. Mason, J. Ganesan, H. van Zanten, D. Wirtz, S.C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).

    Article  ADS  Google Scholar 

  19. T.G. Mason, Rheol. Acta 39, 371 (2000).

    Article  Google Scholar 

  20. J.C. Crocker, B.D. Hoffman, Meth. Cell Biol. 83, 141 (2007).

    Article  Google Scholar 

  21. C.J. Chin, S. Yiacoumi, C. Tsouris, Colloids Surf., A 204, 63 (2002).

    Article  Google Scholar 

  22. P. Domínguez-García, S. Melle, M. A. Rubio, J. Colloid Interface Sci. 333, 221 (2009).

    Article  Google Scholar 

  23. J. Rabinow, AIEE Trans. 67, 1308 (1948).

    Google Scholar 

  24. D.G. Grier, Y. Han, J. Phys.: Condens. Matter 16, 4145 (2004).

    Article  ADS  Google Scholar 

  25. A.E. Larsen, D.G. Grier, Nature 385, 230 (1997).

    Article  ADS  Google Scholar 

  26. S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).

    Article  ADS  Google Scholar 

  27. A. Vrij, Pure Appl. Chem. 48, 471 (1976).

    Article  Google Scholar 

  28. H. Hess, R. Klein, Appl. Phys. 32, 173 (1983).

    MathSciNet  Google Scholar 

  29. D.M. Heyes, J.R. Melrose, J. Non-Newtonian Fluid Mech. 46, 1 (1993).

    Article  Google Scholar 

  30. R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).

  31. B. Lin, D. Valley, M. Meron, B. Cui, H.M. Ho, S.A. Rice, J. Phys. Chem. B 113, 12742 (2009).

    Google Scholar 

  32. D.M. Heyes, Phys. Lett. A 132, 399 (1988).

    Article  ADS  Google Scholar 

  33. J. Dzubiella, H. Löwen, C.N. Likos, Phys. Rev. Lett. 91, 248301 (2003).

    Article  ADS  Google Scholar 

  34. D.R. Fross, J.F. Brady, J. Rheol. 44, 620 (2000).

    ADS  Google Scholar 

  35. I.C. Carpen, J.F. Brady, J. Rheol. 49, 1483 (2005).

    Article  ADS  Google Scholar 

  36. K.S. Schmitz, L.B. Bhuiyan, A.K. Mukherjee, Langmuir 19, 7160 (2003).

    Article  Google Scholar 

  37. T. Savin, P.T. Spicer, P.S. Doyle, Phys. Rev. E 76, 021501 (2007).

    Article  ADS  Google Scholar 

  38. B.V.R. Tata, P.S. Mohanty, M.C. Valsakumar, Solid State Commun. 147, 360 (2008).

    Article  ADS  Google Scholar 

  39. Y. Han, D.G. Grier, Phys. Rev. Lett. 91, 038302 (2003).

    Article  ADS  Google Scholar 

  40. A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.P. Hansen, J. Chem. Phys. 117, 1893 (2002).

    Article  ADS  Google Scholar 

  41. F. Esquembre, Comput. Phys. Commun. 156, 199 (2004).

    Article  ADS  Google Scholar 

  42. L. de la Torre, J. Sanchez, S. Dormido, J.P. Sanchez, M. Yuste, C. Carreras, Eur. J. Phys. 32, 571 (2011).

    Article  Google Scholar 

  43. T.D. Squires, T.D. Mason, Annu. Rev. Fluid Mech. 42, 413 (2010).

    Article  ADS  Google Scholar 

  44. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Phys. Rev. Lett. 85, 888 (2000).

    Article  ADS  Google Scholar 

  45. S.H. Behrens, D.G. Grier, Phys. Rev. E 64, 050401(R) (2001).

    Article  ADS  Google Scholar 

  46. D.A.R.P.A. Dullens, W.K. Kegel, Proc. Natl. Acad. Sci. U.S.A. 103, 529 (2006).

    Article  ADS  Google Scholar 

  47. H. Löwen, Phys. Rev. E 53, R29 (1996).

    Article  ADS  Google Scholar 

  48. D.C. Chae, F.H. Ree, T. Ree, J. Chem. Phys. 50, 1581 (1969).

    Article  ADS  Google Scholar 

  49. J.J. Erpenbeck, M. Luban, Phys. Rev. A 32, 2920 (1985).

    Article  ADS  Google Scholar 

  50. J. Kolafa, M. Rottner, Mol. Phys. 104, 3455 (2006).

    ADS  Google Scholar 

  51. D.M. Heyes, H. Sigurgeirsson, J. Rheol. 48, 223 (2004).

    Article  ADS  Google Scholar 

  52. J. Ding, H.E. Warriner, J.A. Zasadzinski, Phys. Rev. Lett. 88, 168102 (2002).

    Article  ADS  Google Scholar 

  53. J.W. Bullard, A.T. Pauli, E.J. Garboczi, N.S. Martys, J. Colloid Interface Sci. 330, 186 (2009).

    Article  Google Scholar 

  54. A.J.C. Ladd, J. Chem. Phys. 93, 3484 (1990).

    Article  ADS  Google Scholar 

  55. R. Verma, J.C. Crocker, T.C. Lubensky, A.G. Yodh, Macromolecules 33, 177 (2000).

    Article  ADS  Google Scholar 

  56. M. Triantafillou, R.D. Kamien, Phys. Rev. E 59, 5621 (1999).

    Article  ADS  Google Scholar 

  57. E. Lemaire, Y. Grasselli, G. Bossis, J. Phys. II 2, 359 (1992).

    Article  Google Scholar 

  58. M. Parthasarathy, D.J. Klingenberg, Mater. Sci. Eng. R 17, 57 (1996).

    Article  Google Scholar 

  59. P. Domínguez-García, S. Melle, J.M. Pastor, M.A. Rubio, Phys. Rev. E 76, 051403 (2007).

    Article  ADS  Google Scholar 

  60. S. Melle, M.A. Rubio, G.G. Fuller, Phys. Rev. Lett. 87, 115501 (2001).

    Article  ADS  Google Scholar 

  61. A. Ashkin, Science 210, 1081 (1980).

    Article  ADS  Google Scholar 

  62. P. Domínguez-García, J.M. Pastor, M.A. Rubio, Eur. Phys. J. E 34, 36 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Domínguez-García.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Domínguez-García, P. Microrheological consequences of attractive colloid-colloid potentials in a two-dimensional Brownian fluid. Eur. Phys. J. E 35, 73 (2012). https://doi.org/10.1140/epje/i2012-12073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12073-2

Keywords

  • Soft Matter: Colloids and Nanoparticles