Active and driven hydrodynamic crystals

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Ramaswamy, Adv. Phys. 50, 297 (2001).

    ADS  Article  Google Scholar 

  2. 2.

    E. Guazzelli, J. Hinch, Annu. Rev. Fluid Mech. 43, 97 (2011).

    MathSciNet  ADS  Article  Google Scholar 

  3. 3.

    X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).

    ADS  Article  Google Scholar 

  4. 4.

    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    L. Cisneros, R. Cortez, C. Dombrowski, R. Goldstein, J. Kessler, Exp. Fluids 43, 737 (2007).

    Article  Google Scholar 

  6. 6.

    A. Baskaran, M. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    S. Ramaswamy, Annu. Rev. Condens. Matter 1, 323 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    G. Subramanian, D.L. Koch, Ann. Rev. Fluid Mech. 43, 637 (2011).

    MathSciNet  ADS  Article  Google Scholar 

  9. 9.

    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 99, 058102 (2007).

    ADS  Article  Google Scholar 

  10. 10.

    D. Saintillan, M. Shelley, Phys. Fluids 20, 123304 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    D. Dendukuri, P.S. Doyle, Adv. Mater 21, 4071 (2009).

    Article  Google Scholar 

  12. 12.

    M. Baron, J. Blawzdziewicz, E. Wajnryb, Phys. Rev. Lett. 100, 174502 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    J. Blawzdziewicz, R.H. Goodman, N. Khurana, E. Wajnryb, Y.N. Young, Physica D 239, 1214 (2010).

    MathSciNet  ADS  Article  MATH  Google Scholar 

  14. 14.

    T. Beatus, T. Tlusty, R. Bar-Ziv, Nat. Phys. 2, 743 (2006).

    Article  Google Scholar 

  15. 15.

    M. Hashimoto, B. Mayers, P. Garstecki, G. Whitesides, Small 2, 1292 (2006).

    Article  Google Scholar 

  16. 16.

    J. Howse, R. Jones, A. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).

    ADS  Article  Google Scholar 

  17. 17.

    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).

    Article  Google Scholar 

  18. 18.

    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    D. Saintillan, M.J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, UK, 1967). .

  21. 21.

    T. Beatus, R. Bar-Ziv, T. Tlusty, Phys. Rev. Lett. 99, 124502 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    G.B. Jeffery, Proc. R. Soc. London, Ser. A 102, 161 (1922).

    ADS  Article  Google Scholar 

  23. 23.

    N. Liron, S. Mochon, J. Eng. Mech. 10, 287 (1976).

    Article  MATH  Google Scholar 

  24. 24.

    D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).

    Article  Google Scholar 

  25. 25.

    E. Lauga, T. Powers, Rep. Prog. Phys. 72, 096601 (2009).

    MathSciNet  ADS  Article  Google Scholar 

  26. 26.

    A. Baskaran, M. Marchetti, Proc. Natl. Acad. Sci. U.S.A. 106, 15567 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    J. Crowley, Phys. Fluids 19, 1296 (1976).

    ADS  Article  MATH  Google Scholar 

  28. 28.

    A.A. Evans, T. Ishikawa, T. Yamaguchi, E. Lauga, Phys. Fluids 23, 111702 (2011).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. Desreumaux.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Desreumaux, N., Florent, N., Lauga, E. et al. Active and driven hydrodynamic crystals. Eur. Phys. J. E 35, 68 (2012).

Download citation


  • Flowing Matter: Liquids and Complex Fluids