Skip to main content

Random motion with interfacial contact: Driven diffusion vis-à-vis mechanical activation

Abstract

Rolling of a small sphere on a patterned support of an elastomer is governed by a non-linear friction. No motion occurs when the external field is weaker than the frictional resistance. However, with the intervention of an external noise, a viscous friction like behavior emerges; thus the sphere rolls with a uniform drift velocity that is proportional to the applied field. At a very low noise strength, the sphere exhibits a stick-slip behavior with motion occurring always along the bias. With the increase in the noise strength, the sphere exhibits a diffusive drift accompanied with forward and backward displacements. During this stage of driven diffusive motion, the ratio of the integrated probabilities of the negative-to-positive work fluctuations decreases monotonically with the time of observation, from which a temperature like intensive parameter can be estimated. This parameter conforms to Einstein’s ratio of diffusivity and mobility that increases almost linearly, even though the diffusivity increases super-linearly, with the strength of the noise. A new barrier crossing experiment is introduced that can be performed either with a hard (e.g. a steel ball) or with a soft (e.g. a water drop) sphere in contact with a periodically undulated substrate. The frequency of barrier crossing follows a transition state equation allowing a direct estimation of the effective temperature. These experiments as well as certain numerical simulations suggest that the effective temperature of a system controlled by a non-linear friction may not have a unique value.

This is a preview of subscription content, access via your institution.

References

  1. T.K. Caughey, J.K. Dienes, J. Appl. Phys. 32, 2476 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009).

    Article  ADS  Google Scholar 

  3. P.S. Goohpattader, M.K. Chaudhury, J. Chem. Phys. 133, 024702 (2010).

    Article  ADS  Google Scholar 

  4. S. Mettu, M.K. Chaudhury, Langmuir 26, 8131 (2010).

    Article  Google Scholar 

  5. P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Langmuir 25, 9969 (2009).

    Article  Google Scholar 

  6. L.Z. Prandtl, Angew Math. Mech. 8, 85 (1928).

    Article  MATH  Google Scholar 

  7. M.H. Muser, Proc. Natl. Acad. Sci. U.S.A. 107, 1257 (2010).

    Article  ADS  Google Scholar 

  8. M.H. Muser, Phys. Rev. B 84, 125419 (2011).

    Article  ADS  Google Scholar 

  9. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000).

  10. M.H. Muser, M. Urbakh, M.O. Robbins, Adv. Chem. Phys. 126, 187 (2003).

    Article  Google Scholar 

  11. S. Nasuno, A. Kudrolli, J.P. Gollub, Phys. Rev. Lett. 79, 949 (1997).

    Article  ADS  Google Scholar 

  12. W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999).

    Article  ADS  MATH  Google Scholar 

  13. T. Baumberger, C. Caroli, Adv. Phys. 55, 279 (2006).

    Article  ADS  Google Scholar 

  14. W. Baltensperger, J.S. Helman, IEEE Trans. Mag. 27, 4772 (1991).

    Article  ADS  Google Scholar 

  15. O. Zik, J. Stavans, Y. Rabin, Europhys. Lett. 17, 315 (1992).

    Article  ADS  Google Scholar 

  16. K. Hayashi, M. Takano, Phys. Rev. E 76, 050104 (2007).

    Article  ADS  Google Scholar 

  17. P. Ilg, J.-L. Barrat, EPL 79, 26001 (2007).

    Article  ADS  Google Scholar 

  18. L. Joly, S. Merabia, J.-L. Barrat, EPL 94, 50007 (2011).

    Article  ADS  Google Scholar 

  19. K. Feitosa, N. Menon, Phys. Rev. Lett. 92, 164301 (2004).

    Article  ADS  Google Scholar 

  20. The concept of effective temperature was pioneered by several authors (e.g., F. Spaepen, P.C. Hohenberg, J.S. Langer, S.F. Edwards) in different contexts. The subject is rather vast and it would be too daunting to review all the important papers in the current manuscript. The reader may consult the following authoritative reviews and the references cited therein: L.F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011), D. Bi, B. Chakraborty, Philos. Trans. R. Soc. A 367, 5073 (2009).

  21. G. D’Anna, P. Mayor, A Barrat, V. Loreto, F. Nori, Nature 424, 909 (2003).

    Article  ADS  Google Scholar 

  22. A.R. Abate, D.J. Durian, Phys. Rev. Lett. 101, 245701 (2008).

    Article  ADS  Google Scholar 

  23. C. Song, P. Wang, H.A. Makse, Proc. Natl. Acad. Sci. U.S.A. 102, 2299 (2005).

    Article  ADS  Google Scholar 

  24. E.G. Daub, J.M. Carlson, Annu. Rev. Condens. Matter Phys. 1, 397 (2010).

    Article  ADS  Google Scholar 

  25. T.K. Haxton, A.J. Liu, Phys. Rev. Lett. 99, 195701 (2007).

    Article  ADS  Google Scholar 

  26. H.M. Jaeger, C.H. Liu, S.R. Nagel, Phys. Rev. Lett. 62, 40 (1989).

    Article  ADS  Google Scholar 

  27. R.P. Behringer, D. Bi, B. Chakraborty, S. Henkes, R.R. Hartley, Phys. Rev. Lett. 101, 268301 (2008).

    Article  ADS  Google Scholar 

  28. K.A. Reddy, Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 106, 108301 (2011).

    Article  ADS  Google Scholar 

  29. P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Eur. Phys. J. E 34, 120 (2011).

    Article  Google Scholar 

  30. N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. U.S.A. 104, 10786 (2007).

    Article  ADS  Google Scholar 

  31. W.L. Noderer, L. Shen, S. Vajpayee, N.J. Glassmaker, A. Jagota, C.Y. Hui, Proc. R. Soc. London, Ser. A 463, 2631 (2007).

    Article  ADS  Google Scholar 

  32. J.A. Greenwood, K.L. Johnson, S.-H. Choi, M.K. Chaudhury, J. Phys. D 42, 035301 (2009).

    Article  ADS  Google Scholar 

  33. H. She, D.L. Malotky, M.K. Chaudhury, Langmuir 14, 3090 (1998).

    Article  Google Scholar 

  34. H. She, M.K. Chaudhury, Langmuir 16, 622 (2000).

    Article  Google Scholar 

  35. A.D. Roberts, Rubber Chem. Technol. 52, 23 (1979).

    Article  Google Scholar 

  36. K. Kendall, Wear 33, 351 (1975).

    Article  Google Scholar 

  37. M.J. Barquins, J. Adhesion 26, 1 (1988).

    Article  Google Scholar 

  38. P.G. de Gennes, J. Stat. Phys. 119, 953 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. S. Daniel, S. Sircar, J. Gliem, M.K. Chaudhury, Langmuir 20, 4085 (2004).

    Article  Google Scholar 

  40. A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn. 73, 2037 (2004).

    Article  ADS  MATH  Google Scholar 

  41. J.M. Johnsen, A. Naess, in Proceedings of EURODYN’93- Structural Dynamics, edited by T. Moan (Balkema, Rotterdam, 1993) ISBN: 90 5410336 1.

  42. A. Baule, E.G.D. Cohen, H. Touchette, Nonlinearity 24, 351 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. H. Touchette, E. Van der Straeten, W. Just, J. Phys. A 43, 445002 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  44. A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011).

    Article  ADS  Google Scholar 

  45. J. Talbot, P. Viot, Phys. Rev. E 85, 021310 (2012).

    Article  ADS  Google Scholar 

  46. W. Gerlach, Naturwiss 15, 15 (1927).

    Article  ADS  Google Scholar 

  47. G.E. Uhlenbeck, S. Goudsmit, Phys. Rev. 34, 145 (1929).

    Article  ADS  MATH  Google Scholar 

  48. E. Altintas, K. Boehringer, H. Fujita, IEIC Tech. Rep. 105, 51 (2005).

    Google Scholar 

  49. Z. Cheng, T.G. Mason, Phys. Rev. Lett. 90, 018304-1 (2003).

    ADS  Google Scholar 

  50. B.H. McNaughton, P. Kinnunen, M. Shlomi, C. Cionca, S.N. Pei, R. Clarke, P. Argyrakis, R. Kopelman, J. Phys. Chem. B 115, 5212 (2011).

    Article  Google Scholar 

  51. S. Mettu, M.K. Chaudhury, Langmuir 27, 10327 (2011).

    Article  Google Scholar 

  52. D.T. Gillespie, Am. J. Phys. 64, 225 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  53. G.A. Tomlinson, Philos. Mag. 7, 905 (1929).

    Google Scholar 

  54. M. Brillouin, Notice sur les Travaux Scientifiques (Gauthier-Villars, Paris, 1904).

  55. C. Caroli, P. Nozieres, in Physics of Sliding Friction, edited by B.N.J. Persson, E. Tosatti (Proceedings of the NATO Advanced Research Workshop and Adriatico Research Conference, Miramare, Trieste, Italy, June 20-23, 1995, Series: Nato Science Series E) Vol. 311, ISBN 978-0-7923-3935-9.

  56. G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 50601 (2002).

    Article  ADS  Google Scholar 

  57. R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003).

    Article  ADS  Google Scholar 

  58. T. Speck, U. Seifert, Europhys. Lett. 74, 391 (2006).

    Article  ADS  Google Scholar 

  59. D. Chaudhuri, A. Chaudhuri, Phys. Rev. Lett. 85, 021102 (2012).

    ADS  Google Scholar 

  60. H. Eyring, J. Chem. Phys. 4, 283 (1936).

    Article  ADS  Google Scholar 

  61. T.D. Blake, J.M. Hanes, J. Colloid Interface Sci. 30, 421 (1969).

    Article  Google Scholar 

  62. A. Schallamach, Proc. R. Soc. London, Ser. B 66, 386 (1953).

    Article  Google Scholar 

  63. A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky, M.K. Chaudhury, J. Phys. Chem. B 104, 4018 (2000).

    Article  Google Scholar 

  64. Close microscopic inspection indeed reveals that the motion of the ball has a slow component along the azimuthal direction, which may have resulted from the slip and the heterogeneity of sliding friction in the zone of contact. It is, however, not clear if this mode contributes to the barrier crossing frequency.

  65. H.A. Kramers, Physica 7, 284 (1940).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. H. Lamb, Hydrodynamics (Cambridge University Press, UK, 1932). .

  67. S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Chaudhury.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goohpattader, P.S., Chaudhury, M.K. Random motion with interfacial contact: Driven diffusion vis-à-vis mechanical activation. Eur. Phys. J. E 35, 67 (2012). https://doi.org/10.1140/epje/i2012-12067-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12067-0

Keywords