Abstract
Rolling of a small sphere on a patterned support of an elastomer is governed by a non-linear friction. No motion occurs when the external field is weaker than the frictional resistance. However, with the intervention of an external noise, a viscous friction like behavior emerges; thus the sphere rolls with a uniform drift velocity that is proportional to the applied field. At a very low noise strength, the sphere exhibits a stick-slip behavior with motion occurring always along the bias. With the increase in the noise strength, the sphere exhibits a diffusive drift accompanied with forward and backward displacements. During this stage of driven diffusive motion, the ratio of the integrated probabilities of the negative-to-positive work fluctuations decreases monotonically with the time of observation, from which a temperature like intensive parameter can be estimated. This parameter conforms to Einstein’s ratio of diffusivity and mobility that increases almost linearly, even though the diffusivity increases super-linearly, with the strength of the noise. A new barrier crossing experiment is introduced that can be performed either with a hard (e.g. a steel ball) or with a soft (e.g. a water drop) sphere in contact with a periodically undulated substrate. The frequency of barrier crossing follows a transition state equation allowing a direct estimation of the effective temperature. These experiments as well as certain numerical simulations suggest that the effective temperature of a system controlled by a non-linear friction may not have a unique value.
This is a preview of subscription content, access via your institution.
References
T.K. Caughey, J.K. Dienes, J. Appl. Phys. 32, 2476 (1961).
B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009).
P.S. Goohpattader, M.K. Chaudhury, J. Chem. Phys. 133, 024702 (2010).
S. Mettu, M.K. Chaudhury, Langmuir 26, 8131 (2010).
P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Langmuir 25, 9969 (2009).
L.Z. Prandtl, Angew Math. Mech. 8, 85 (1928).
M.H. Muser, Proc. Natl. Acad. Sci. U.S.A. 107, 1257 (2010).
M.H. Muser, Phys. Rev. B 84, 125419 (2011).
B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000).
M.H. Muser, M. Urbakh, M.O. Robbins, Adv. Chem. Phys. 126, 187 (2003).
S. Nasuno, A. Kudrolli, J.P. Gollub, Phys. Rev. Lett. 79, 949 (1997).
W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999).
T. Baumberger, C. Caroli, Adv. Phys. 55, 279 (2006).
W. Baltensperger, J.S. Helman, IEEE Trans. Mag. 27, 4772 (1991).
O. Zik, J. Stavans, Y. Rabin, Europhys. Lett. 17, 315 (1992).
K. Hayashi, M. Takano, Phys. Rev. E 76, 050104 (2007).
P. Ilg, J.-L. Barrat, EPL 79, 26001 (2007).
L. Joly, S. Merabia, J.-L. Barrat, EPL 94, 50007 (2011).
K. Feitosa, N. Menon, Phys. Rev. Lett. 92, 164301 (2004).
The concept of effective temperature was pioneered by several authors (e.g., F. Spaepen, P.C. Hohenberg, J.S. Langer, S.F. Edwards) in different contexts. The subject is rather vast and it would be too daunting to review all the important papers in the current manuscript. The reader may consult the following authoritative reviews and the references cited therein: L.F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011), D. Bi, B. Chakraborty, Philos. Trans. R. Soc. A 367, 5073 (2009).
G. D’Anna, P. Mayor, A Barrat, V. Loreto, F. Nori, Nature 424, 909 (2003).
A.R. Abate, D.J. Durian, Phys. Rev. Lett. 101, 245701 (2008).
C. Song, P. Wang, H.A. Makse, Proc. Natl. Acad. Sci. U.S.A. 102, 2299 (2005).
E.G. Daub, J.M. Carlson, Annu. Rev. Condens. Matter Phys. 1, 397 (2010).
T.K. Haxton, A.J. Liu, Phys. Rev. Lett. 99, 195701 (2007).
H.M. Jaeger, C.H. Liu, S.R. Nagel, Phys. Rev. Lett. 62, 40 (1989).
R.P. Behringer, D. Bi, B. Chakraborty, S. Henkes, R.R. Hartley, Phys. Rev. Lett. 101, 268301 (2008).
K.A. Reddy, Y. Forterre, O. Pouliquen, Phys. Rev. Lett. 106, 108301 (2011).
P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Eur. Phys. J. E 34, 120 (2011).
N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. U.S.A. 104, 10786 (2007).
W.L. Noderer, L. Shen, S. Vajpayee, N.J. Glassmaker, A. Jagota, C.Y. Hui, Proc. R. Soc. London, Ser. A 463, 2631 (2007).
J.A. Greenwood, K.L. Johnson, S.-H. Choi, M.K. Chaudhury, J. Phys. D 42, 035301 (2009).
H. She, D.L. Malotky, M.K. Chaudhury, Langmuir 14, 3090 (1998).
H. She, M.K. Chaudhury, Langmuir 16, 622 (2000).
A.D. Roberts, Rubber Chem. Technol. 52, 23 (1979).
K. Kendall, Wear 33, 351 (1975).
M.J. Barquins, J. Adhesion 26, 1 (1988).
P.G. de Gennes, J. Stat. Phys. 119, 953 (2005).
S. Daniel, S. Sircar, J. Gliem, M.K. Chaudhury, Langmuir 20, 4085 (2004).
A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn. 73, 2037 (2004).
J.M. Johnsen, A. Naess, in Proceedings of EURODYN’93- Structural Dynamics, edited by T. Moan (Balkema, Rotterdam, 1993) ISBN: 90 5410336 1.
A. Baule, E.G.D. Cohen, H. Touchette, Nonlinearity 24, 351 (2011).
H. Touchette, E. Van der Straeten, W. Just, J. Phys. A 43, 445002 (2010).
A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011).
J. Talbot, P. Viot, Phys. Rev. E 85, 021310 (2012).
W. Gerlach, Naturwiss 15, 15 (1927).
G.E. Uhlenbeck, S. Goudsmit, Phys. Rev. 34, 145 (1929).
E. Altintas, K. Boehringer, H. Fujita, IEIC Tech. Rep. 105, 51 (2005).
Z. Cheng, T.G. Mason, Phys. Rev. Lett. 90, 018304-1 (2003).
B.H. McNaughton, P. Kinnunen, M. Shlomi, C. Cionca, S.N. Pei, R. Clarke, P. Argyrakis, R. Kopelman, J. Phys. Chem. B 115, 5212 (2011).
S. Mettu, M.K. Chaudhury, Langmuir 27, 10327 (2011).
D.T. Gillespie, Am. J. Phys. 64, 225 (1996).
G.A. Tomlinson, Philos. Mag. 7, 905 (1929).
M. Brillouin, Notice sur les Travaux Scientifiques (Gauthier-Villars, Paris, 1904).
C. Caroli, P. Nozieres, in Physics of Sliding Friction, edited by B.N.J. Persson, E. Tosatti (Proceedings of the NATO Advanced Research Workshop and Adriatico Research Conference, Miramare, Trieste, Italy, June 20-23, 1995, Series: Nato Science Series E) Vol. 311, ISBN 978-0-7923-3935-9.
G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 50601 (2002).
R. van Zon, E.G.D. Cohen, Phys. Rev. E 67, 046102 (2003).
T. Speck, U. Seifert, Europhys. Lett. 74, 391 (2006).
D. Chaudhuri, A. Chaudhuri, Phys. Rev. Lett. 85, 021102 (2012).
H. Eyring, J. Chem. Phys. 4, 283 (1936).
T.D. Blake, J.M. Hanes, J. Colloid Interface Sci. 30, 421 (1969).
A. Schallamach, Proc. R. Soc. London, Ser. B 66, 386 (1953).
A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky, M.K. Chaudhury, J. Phys. Chem. B 104, 4018 (2000).
Close microscopic inspection indeed reveals that the motion of the ball has a slow component along the azimuthal direction, which may have resulted from the slip and the heterogeneity of sliding friction in the zone of contact. It is, however, not clear if this mode contributes to the barrier crossing frequency.
H.A. Kramers, Physica 7, 284 (1940).
H. Lamb, Hydrodynamics (Cambridge University Press, UK, 1932). .
S. Mettu, M.K. Chaudhury, Langmuir 24, 10833 (2008).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goohpattader, P.S., Chaudhury, M.K. Random motion with interfacial contact: Driven diffusion vis-à-vis mechanical activation. Eur. Phys. J. E 35, 67 (2012). https://doi.org/10.1140/epje/i2012-12067-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2012-12067-0