Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: Theory and simulations

Regular Article

Abstract

Over the past twenty years experiments performed on thin polymer films deposited on substrates have shown that the glass transition temperature Tg can either decrease or increase depending on the strength of the interactions. Over the same period, experiments have also demonstrated that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous, on the scale of a few nanometers. A model for the dynamics of non-polar polymers, based on percolation of slow subunits, has been proposed and developed over the past ten years. It proposes a unified mechanism regarding these two features. By extending this model, we have developed a 3D model, solved by numerical simulations, in order to describe and calculate the mechanical properties of polymers close to the glass transition in the linear regime of deformation, with a spatial resolution corresponding to the subunit size. We focus on the case of polymers confined between two substrates with non-negligible interactions between the polymer and the substrates, a situation which may be compared to filled elastomers. We calculate the evolution of the elastic modulus as a function of temperature, for different film thicknesses and polymer-substrate interactions. In particular, this allows to calculate the corresponding increase of glass transition temperature, up to 20 K in the considered situations. Moreover, between the bulk Tg and Tg + 50 K the modulus of the confined layers is found to decrease very slowly in some cases, with moduli more than ten times larger than that of the pure matrix at temperatures up to Tg + 50 K. This is consistent with what is observed in reinforced elastomers. This slow decrease of the modulus is accompanied by huge fluctuations of the stress at the scale of a few tens of nanometers that may even be negative as compared to the solicitation, in a way that may be analogous to mechanical heterogeneities observed recently in molecular dynamics simulations. As a consequence, confinement may result not only in an increase of the glass transition temperature, but in a huge broadening of the glass transition.

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).CrossRefGoogle Scholar
  2. 2.
    J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., 1980).Google Scholar
  3. 3.
    M.D. Ediger, Annu. Rev. Chem. 51, 99 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess, M.D. Ediger, J. Chem. Phys. 114, 7299 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    M.T. Cicerone, F.R. Blackburn, M.D. Ediger, Macromolecules 28, 8224 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    C.-Y. Wang, M.D. Ediger, Macromolecules 30, 4770 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    M.T. Cicerone, P.A. Wagner, M.D. Ediger, J. Phys. Chem. B 101, 8727 (1997).CrossRefGoogle Scholar
  11. 11.
    F. Fujara, B. Geil, H. Sillescu, G. Fleischer, Z. Phys. B 88, 195 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Hwang, T. Inoue, P.A. Wagner, M.D. Ediger, J. Polym. Sci., Part B: Polym. Phys. 38, 68 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    R. Richert, J. Chem. Phys. 113, 8404 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    D.B. Hall, A. Dhinojwala, J.M. Torkelson, Phys. Rev. Lett. 79, 103 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    J. Mattsson, J.A. Forrest, J. Borjesson, Phys. Rev. E. 62, 5187 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    S. Kawana, R.A.L. Jones, Phys. Rev. E. 63, 021501 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    J.Q. Pham, P.F. Green, J. Chem. Phys. 116, 5801 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).CrossRefGoogle Scholar
  22. 22.
    C.J. Ellison, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 40, 2745 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    J.Q. Pham, P.F. Green, Macromolecules 36, 1665 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    J.H. van Zanten, W.E. Wallace, W.L. Wu, Phys. Rev. E 53, R2053 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Grohens, M. Brogly, C. Labbe, M.-O. David, J. Schultz, Langmuir 14, 2929 (1998).CrossRefGoogle Scholar
  29. 29.
    P. Carriere, Y. Grohens, J. Spevacek, J. Schultz, Langmuir 16, 5051 (2000).CrossRefGoogle Scholar
  30. 30.
    Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).CrossRefGoogle Scholar
  31. 31.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Fryer, E.J. Peters, J.E. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W. Wu, Macromolecules 34, 5627 (2001).ADSCrossRefGoogle Scholar
  33. 33.
    O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).ADSCrossRefGoogle Scholar
  34. 34.
    B. Metin, F.D. Blum, Langmuir 26, 5226 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85, 2340 (2000).ADSCrossRefGoogle Scholar
  36. 36.
    K. Tanaka, A. Takahara, T. Kajiyama, Macromolecules 33, 7588 (2000).ADSCrossRefGoogle Scholar
  37. 37.
    J.A. Hammerschmidt, W.L. Gladfelter, G. Haugstad, Macromolecules 32, 3360 (1999).ADSCrossRefGoogle Scholar
  38. 38.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).ADSCrossRefGoogle Scholar
  39. 39.
    D. Long, Eur. Phys. J. E 8, 245 (2002).CrossRefGoogle Scholar
  40. 40.
    J. Berriot, F. Lequeux, H. Montès, L. Monnerie, D. Long, P. Sotta, J. Non-Cryst. Solids 307, 719 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    J. Berriot, H. Montès, F. Lequeux, D. Long, P. Sotta, Macromolecules 35, 9756 (2002).ADSCrossRefGoogle Scholar
  42. 42.
    J. Berriot, H. Montès, F. Lequeux, D. Long, P. Sotta, Europhys. Lett. 64, 50 (2003).ADSCrossRefGoogle Scholar
  43. 43.
    S. Merabia, P. Sotta, D.R. Long, Macromolecules 41, 8252 (2008).ADSCrossRefGoogle Scholar
  44. 44.
    S. Merabia, P. Sotta, D.R. Long, J. Polym. Sci. Part B: Polym. Phys. 48, 1495 (2010).ADSCrossRefGoogle Scholar
  45. 45.
    P. Rittigstein, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 44, 2935 (2006).ADSCrossRefGoogle Scholar
  46. 46.
    D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules 39, 6565 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    K. Putz, R. Krishnamoorti, P.F. Green, Polymer 48, 3540 (2007).CrossRefGoogle Scholar
  48. 48.
    J.M. Kropka, K.W. Putz, V. Pryamitsyn, V. Ganesan, P.F. Green, Macromolecules 40, 5424 (2007).ADSCrossRefGoogle Scholar
  49. 49.
    Y.-Q. Rao, J.M. Pochan, Macromolecules 40, 290 (2007).ADSCrossRefGoogle Scholar
  50. 50.
    P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007).ADSCrossRefGoogle Scholar
  51. 51.
    M.-J. Wang, Rubber Chem. Technol. 71, 520 (1998).CrossRefGoogle Scholar
  52. 52.
    D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).CrossRefGoogle Scholar
  53. 53.
    S. Merabia, D. Long, Eur. Phys. J. E 9, 195 (2002).CrossRefGoogle Scholar
  54. 54.
    S. Merabia, P. Sotta, D. Long, Eur. Phys. J. E 15, 189 (2004).CrossRefGoogle Scholar
  55. 55.
    P. Sotta, D. Long, Eur. Phys. J. E 11, 375 (2003).CrossRefGoogle Scholar
  56. 56.
    S. Merabia, D. Long, J. Chem. Phys. 125, 234901 (2006).ADSCrossRefGoogle Scholar
  57. 57.
    K. Chen, E.J. Saltzman, K.S. Schweizer, J. Phys.: Condens. Matter 21, 503101 (2009).CrossRefGoogle Scholar
  58. 58.
    J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).ADSCrossRefGoogle Scholar
  59. 59.
    J.L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3430 (2010).ADSCrossRefGoogle Scholar
  60. 60.
    S. Merabia, D. Long, Macromolecules 41, 3284 (2008).ADSCrossRefGoogle Scholar
  61. 61.
    R. Yamamoto, A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).ADSCrossRefGoogle Scholar
  62. 62.
    C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).ADSCrossRefGoogle Scholar
  63. 63.
    C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001).CrossRefGoogle Scholar
  64. 64.
    F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).CrossRefGoogle Scholar
  65. 65.
    P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002).ADSCrossRefGoogle Scholar
  66. 66.
    P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004).CrossRefGoogle Scholar
  67. 67.
    S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci.: Part B: Polym. Phys. 44, 2951 (2006).ADSCrossRefGoogle Scholar
  68. 68.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).ADSCrossRefGoogle Scholar
  69. 69.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (1992).MathSciNetCrossRefGoogle Scholar
  70. 70.
    K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 119, 1181 (2003).ADSCrossRefGoogle Scholar
  71. 71.
    K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 55, 241 (2004).Google Scholar
  72. 72.
    G. Diezemann, J. Chem. Phys. 123, 204510 (2005).ADSCrossRefGoogle Scholar
  73. 73.
    L.S. Loo, R.E. Cohen, K.K. Gleason, Science 288, 116119 (2000).CrossRefGoogle Scholar
  74. 74.
    H.-N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, Science 323, 231 (2009).CrossRefGoogle Scholar
  75. 75.
    R.A. Riggleman, H.-N. Lee, M.D. Ediger, J.J. de Pablo, Soft Matter 6, 287 (2010).ADSCrossRefGoogle Scholar
  76. 76.
    K. Yoshimoto, T.S. Jain, K. van Workum, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).ADSCrossRefGoogle Scholar
  77. 77.
    F. Leonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.-L. Barrat, Phys. Rev. B 72, 224206 (2005).ADSCrossRefGoogle Scholar
  78. 78.
    R.A. Riggleman, H.-N. Lee, M.D. Ediger, J.J. de Pablo, Phys. Rev. Lett. 99, 215501 (2007).ADSCrossRefGoogle Scholar
  79. 79.
    M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat, Phys. Rev. E 80, 026112 (2009).ADSCrossRefGoogle Scholar
  80. 80.
    G.J. Papakonstantopoulos, R.A. Riggleman, J.-L. Barrat, J.J. de Pablo, Phys. Rev. E 77, 041502 (2008).ADSCrossRefGoogle Scholar
  81. 81.
    R.A. Riggleman, K.S. Schweizer, J.J. de Pablo, Macromolecules 41, 4969 (2008).ADSCrossRefGoogle Scholar
  82. 82.
    A. Widmer-Cooper, P. Harrowell, J. Phys.: Condens. Matter 17, S4025 (2005).ADSCrossRefGoogle Scholar
  83. 83.
    M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Oxford publishing, Oxford, 1986).Google Scholar
  84. 84.
    T.G. Lombardo, P.G. Debenedetti, F.H. Stillinger, J. Chem. Phys. 125, 174507 (2006).ADSCrossRefGoogle Scholar
  85. 85.
    J.E. Mark, Physical Properties of Polymers Handbook (American Institute of Physics, 1996).Google Scholar
  86. 86.
    R.N. Haward, The Physics of Glassy Polymers (Applied Science Publishers, London, 1973).Google Scholar
  87. 87.
    G.W. Scherer, Relaxation in Glass and Composites (John Wiley and Sons, New York, 1986).Google Scholar
  88. 88.
    R.E. Robertson, J. Polym. Sci. Polym. Symp. 63, 173 (1978).CrossRefGoogle Scholar
  89. 89.
    A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci: Polym. Phys. Ed. 17, 1097 (1979).ADSCrossRefGoogle Scholar
  90. 90.
    J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., 1980).Google Scholar
  91. 91.
    J. Fröhlich, W. Niedermeier, H.-D. Luginsland, Composites: Part A 36, 449 (2005).CrossRefGoogle Scholar
  92. 92.
    H. Montes, T. Chaussée, A. Papon, F. Lequeux, L. Guy, Eur. Phys. J. E 31, 263 (2010).CrossRefGoogle Scholar
  93. 93.
    M. Klüppel, The role of glassy-like polymer bridges in rubber reinforcement, in Constitutive Models for Rubber VII, edited by S. Jerrams, N. Murphy (Taylor and Francis, London, UK, 2012) (Proceedings of the 7th European Conference on Constitutive Models for Rubber).Google Scholar
  94. 94.
    B. Gabrielle, “Determination et études des mécanismes mésoscopique de dèchirure des caoutchoucs naturel renforcés”, PhD thesis, Université de Lyon (2009).Google Scholar
  95. 95.
    Z. Mane, “Determination et études des mécanismes mésoscopique responsables de l’usure des caoutchoucs naturels renforcés”, PhD thesis, Université de Lyon (2011).Google Scholar
  96. 96.
    P.A. O’Connell, G.B. McKenna, Science 307, 1760 (2005).ADSCrossRefGoogle Scholar
  97. 97.
    R.B. Bogoslovov, C.M. Roland, A.R. Ellis, A.M. Randall, C.G. Robertson, Macromolecules 41, 1289 (2008).ADSCrossRefGoogle Scholar
  98. 98.
    C.G. Robertson, C.J. Lin, M. Rackaitis, C.M. Roland, Macromolecules 41, 2727 (2008).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Dequidt
    • 1
  • D. R. Long
    • 1
  • P. Sotta
    • 1
  • O. Sanséau
    • 1
  1. 1.Laboratoire Polymères et Matériaux AvancésUMR 5268 CNRS/RhodiaSaint-FonsFrance

Personalised recommendations