Shear-affected depletion interaction

Open Access
Regular Article

Abstract

We investigate the influence of flow fields on the strength of the depletion interaction caused by disc-shaped depletants. At low mass concentration of discs, it is possible to continuously decrease the depth of the depletion potential by increasing the applied shear rate until the depletion force is not perceivable experimentally. Above a threshold in the platelet mass concentration, the depletion potential can no longer be affected by flow in the accessible range of shear rates. While the observed decrease of depletion strength at low depletant concentration may be ascribed to flow alignment of the discs, it is not clear why the influence of flow is vanishing at high concentrations. In order to observe these effects, a modification of the established total internal reflexion microscopy (TIRM) technique is be implemented. We show the suitability of these modifications to measure particle-wall interaction potentials under non-equilibrium conditions for systems where particles are exposed to a shear.

Keywords

Flowing Matter: Interfacial phenomena 

References

  1. 1.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, 2011).Google Scholar
  2. 2.
    S. Asakura, F. Oosawa, J. Polym. Sci 33, 183 (1958).ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Conrad, H.M. Wyss, V. Trappe, J. Rheol. 54, 421 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    K.R. Purdy, S. Fraden, Phys. Rev. E 70, 061703 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    V.J. Anderson, H.N.W. Lekkerkerker, Nature 416, 811 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    W.C.K. Poon, J. Phys.: Condens. Matter 14, R 859 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    G.E. Fernandes, D.J. Beltran-Villegas, M.A. Bevan, Langmuir 24, 10776 (2008).CrossRefGoogle Scholar
  8. 8.
    R. Fåhraeus, Phys. Rev. 9, 241 (1929).Google Scholar
  9. 9.
    J. Dzubiella, H. Löwen, C.N. Likos, Phys. Rev. Lett. 91, 248301 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    K.-H. Lin, J.C. Crocker, A.C. Zeri, A.G. Yodh, Phys. Rev. Lett. 87, 088301 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    D. Rudhardt, C. Bechinger, P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    M. Piech, J.Y. Walz, J. Colloid Interface Sci. 232, 86 (2000).CrossRefGoogle Scholar
  13. 13.
    A. Sharma, J.Y. Walz, J. Chem. Soc., Faraday Trans. 92, 4997 (1996).CrossRefGoogle Scholar
  14. 14.
    P. Holmqvist, D. Kleshchanok, Peter R. Lang, Eur. Phys. J. E 26, 177 (2008).CrossRefGoogle Scholar
  15. 15.
    P. Holmqvist, D. Kleshchanok, P.R. Lang, Langmuir 23, 12010 (2007).CrossRefGoogle Scholar
  16. 16.
    L. Helden, G.H. Koenderink, P. Leiderer, C. Bechinger, Langmuir 20, 5662 (2004).CrossRefGoogle Scholar
  17. 17.
    L. Helden, R. Roth, G.H. Koenderink, P. Leiderer, C. Bechinger, Phys. Rev. Lett. 90, 048301 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    P.C. Odiachi, D.C. Prieve, Colloids Surf. A 146, 315 (1999).CrossRefGoogle Scholar
  19. 19.
    P.R. Lang D. Kleshchanok, R. Tuinier, Langmuir 22, 9121 (2006).CrossRefGoogle Scholar
  20. 20.
    D.C. Prieve, Adv. Coll. Interface Sci. 82, 93 (1999).CrossRefGoogle Scholar
  21. 21.
    A.M. Wierenga, T.A.J. Lenstra, A.P. Philipse, Colloids Surf. A 134, 359 (1998).CrossRefGoogle Scholar
  22. 22.
    C. July, D. Kleshchanok, P.R. Lang, Soft Matter 7, 6444 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    Z. Dogic, S. Fraden, Curr. Opinion Colloid Interface Sci. 11, 47 (2006).CrossRefGoogle Scholar
  24. 24.
    D. Kleshchanok, M. Heinen, G. Nagele, P. Holmqvist, Soft Matter 8, 1584 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    F.M. van der Kooij, K. Kassapidou, H.N.W. Lekkerkerker, Nature 406, 868 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996).CrossRefGoogle Scholar
  27. 27.
    J.E.G.J. Wijnhoven, Chem. Mater. 16, 3821 (2004).CrossRefGoogle Scholar
  28. 28.
    D. Lide, CRC Handbook of Chemistry and Physics, Vol. 91 (Taylor and Francis, 2010).Google Scholar
  29. 29.
    J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Kluwer Academic Publishers, 1963).Google Scholar
  30. 30.
    H. Brenner, Chem. Eng. Sci. 16, 242 (1961).CrossRefGoogle Scholar
  31. 31.
    A.J. Goldman, R.G. Cox, H. Brenner, Chem. Eng. Sci. 22, 637 (1967).CrossRefGoogle Scholar
  32. 32.
    B. Cichocki, B. Jones, Physica A 258, 273 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    Z. Adamcyzk, M. Adamcyzk, T.G.M. Van De Ven, J. Colloid Interface Sci. 96, 204 (1983).CrossRefGoogle Scholar
  34. 34.
    B.H. Lin, J. Yu, S.A. Rice, Phys. Rev. E 62, 3909 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    P. Holmqvist, J.K.G. Dhont, P.R. Lang, J. Chem. Phys. 126, 044707 (2007).ADSCrossRefGoogle Scholar
  36. 36.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 132, 054511 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    D. Kleshchanok, A.V. Petukhov, P. Holmqvist, D.V. Byelov, H.N.W. Lekkerkerker, Langmuir 26, 13614 (2010).CrossRefGoogle Scholar
  38. 38.
    R.G. Winkler, G. Gompper, J.K.G. Dhont, M. Ripoll, P. Holmqvist, M.P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Forschungszentrum JülichICS-3 - Soft MatterJülichGermany
  2. 2.Van ’t Hoff Laboratory for Physical and Colloid Chemistry - Debye Research InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations