Advertisement

Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles

  • A. PuistoEmail author
  • X. Illa
  • M. Mohtaschemi
  • M. J. Alava
Regular Article

Abstract

The rheology of nanofiber suspensions is studied solving numerically the Population Balance Equations (PBE). To account for the anisotropic nature of nanofibers, a relation is proposed for their hydrodynamic volume. The suspension viscosity is calculated using the computed aggregate size distributions together with the Krieger-Dougherty constitutive equation. The model is fitted to experimental flow curves for Carbon NanoFibers (CNF) and for NanoFibrillated Cellulose (NFC), giving a first estimation of the microscopic anisotropy parameter, and yielding information on the structural properties and rheology of each system.

Keywords

Aspect Ratio Shear Rate Fractal Dimension Bond Force Hydrodynamic Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.T.N. Chen, Q. Wen, P.A. Janmey, J.C. Crocker, A.G. Yodh, Annu. Rev. Condens. Matter Phys. 1, 301 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    D. Quemada, C. Berli, Adv. Colloid Interface Sci. 98, 51 (2002).CrossRefGoogle Scholar
  3. 3.
    F. Mallamace, N. Micali, C. Vasi, Phys. Rev. A 42, 7304 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    G. Barthelmes, S.E. Pratsinis, H. Buggisch, Chem. Eng. Sci. 58, 2893 (2003).CrossRefGoogle Scholar
  5. 5.
    A.R. Heath, P.A. Bahri, P.D. Fawell, J.B. Farrow, A.I.Ch.E. J. 52, 1641 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Ragouilliaux, G. Ovarlez, N. Shahidzadeh-Bonn, B. Herzhaft, T. Palermo, P. Coussot, Phys. Rev. E 76, 051408 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    T. Zimmermann, E. Pöhler, T. Geiger, Adv. Eng. Mat. 6, 754 (2004).CrossRefGoogle Scholar
  8. 8.
    I. Siró, Cellulose 17, 459 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. Larsson, O. Ikkala et al., BioMacromolecules 8, 1934 (2007).CrossRefGoogle Scholar
  10. 10.
    M.A. Hubbe, O.J. Rojas, L.A. Lucia, M. Sain, BioRes. 3, 929 (2008).Google Scholar
  11. 11.
    M. Bercea, P. Navard, Macromolecules 33, 6011 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    R.G. Larson, Macromolecules 23, 3983 (1990).ADSCrossRefGoogle Scholar
  13. 13.
    P.C.F. Møller, J. Mewis, D. Bonn, Soft Matter 2, 274 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    S. Ahola, P. Myllytie, M. Österberg, T. Teerinen, J. Laine, BioRes. 3, 1315 (2008).Google Scholar
  15. 15.
    M. Iotti, O.W. Gregersen, S. Moe, M. Lenes, J. Polym. Env. 19, 137 (2010).CrossRefGoogle Scholar
  16. 16.
    A.W.K. Ma, K.M. Yearsley, F. Chinesta, M.R. Mackley, Proc. Inst. Mech. Eng. N.J. Nanoeng. Nanosyst. 222, 71 (2008).Google Scholar
  17. 17.
    J. Xu, S. Chatterjee, K.W. Koelling, Y. Wang, S.E. Bechtel, Rheol. Acta 44, 537 (2005).CrossRefGoogle Scholar
  18. 18.
    E.K. Hobbie, D.J. Fry, J. Chem. Phys. 126, 124907 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    Z. Fan, S.G. Advani, J. Rheol. 51, 585 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).Google Scholar
  21. 21.
    M. Vanni, J. Colloid Interface Sci. 221, 143 (2000).CrossRefGoogle Scholar
  22. 22.
    M.U. Bäbler, A.I.Che. J. 54, 1748 (2008).Google Scholar
  23. 23.
    P.T. Spicer, S.E. Pratsinis, A.I.Che. J. 42, 1612 (1996).Google Scholar
  24. 24.
    S. Kumar, D. Ramkrishna, Chem. Eng. Sci. 51, 1311 (1996).CrossRefGoogle Scholar
  25. 25.
    S.D. Cohen, A.C. Hindmarsh, Comp. Phys. 10, 138 (1996).CrossRefGoogle Scholar
  26. 26.
    R. Folkersma, A.J.G. van Diemen, J. Laven, H.N. Stein, Rheol. Acta 38, 257 (1999).CrossRefGoogle Scholar
  27. 27.
    L. Bergström, J. Mater. Sci. 31, 5257 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    I. Santamara-Holek, C.I. Mendoza, J. Colloid Interface Sci. 346, 118 (2010).CrossRefGoogle Scholar
  29. 29.
    S.G. Mason, Pulp. Paper. Mag. Can. 49, 99 (1948).Google Scholar
  30. 30.
    Q. Jiang, B. Logan, Environ. Sci. Technol. 25, 2031 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    R. Buscall, J. Rheol. 54, 1177 (2010).ADSCrossRefGoogle Scholar
  32. 32.
    T. Divoux, D. Tamarii, C. Barentin, S. Manneville, Phys. Rev. Lett. 104, 208301 (2010).ADSCrossRefGoogle Scholar
  33. 33.
    J.W. Goodwin, R.W. Hughes, Rheology for Chemists: An Introduction (The Royal Society of Chemistry, 2008), ISBN 978-0-85404-839-7.Google Scholar
  34. 34.
    W.K.A. Ma, F. Chinesta, A. Ammar, M.R. Mackley, J. Rheol. 52, 1311 (2008).ADSCrossRefGoogle Scholar
  35. 35.
    C. Clasen, W.M. Kulicke, J. Rheol. 47, 321 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    A. Ramachandran, D.T. Leighton Jr., J. Fluid Mech. 603, 207 (2008).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Puisto
    • 1
    Email author
  • X. Illa
    • 1
  • M. Mohtaschemi
    • 1
  • M. J. Alava
    • 1
  1. 1.School of Science, Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations