Abstract
We study the rolling motion of a small solid sphere on a fibrillated rubber substrate in an external field in the presence of a Gaussian noise. From the nature of the drift and the evolution of the displacement fluctuation of the ball, it is evident that the rolling is controlled by a complex non-linear friction at a low velocity and a low noise strength (K), but by a linear kinematic friction at a high velocity and a high noise strength. This transition from a non-linear to a linear friction control of motion can be discerned from another experiment in which the ball is subjected to a periodic asymmetric vibration in conjunction with a random noise. Here, as opposed to that of a fixed external force, the rolling velocity decreases with the strength of the noise suggesting a progressive fluidization of the interface. A state (K) and rate (V) dependent friction model is able to explain both the evolution of the displacement fluctuation as well as the sigmoidal variation of the drift velocity with K. This research sets the stage for studying friction in a new way, in which it is submitted to a noise and then its dynamic response is studied using the tools of statistical mechanics. Although more works would be needed for a fuller realization of the above-stated goal, this approach has the potential to complement direct measurements of friction over several decades of velocities and other state variables. It is striking that the non-Gaussian displacement statistics as observed with the stochastic rolling is similar to that of a colloidal particle undergoing Brownian motion in contact with a soft microtubule.
This is a preview of subscription content,
to check access.References
P.S. Goohpattader, M.K. Chaudhury, J. Chem. Phys. 133, 024702 (2010).
P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Langmuir 25, 9969 (2009).
S. Mettu, M.K. Chaudhury, Langmuir 26, 8131 (2010).
T.P.C. van Noije, M.H. Ernst, Granular Matter 1, 57 (1998).
W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999).
X. Nie, E. Ben-Naim, S.Y. Chen, Europhys. Lett. 51, 679 (2000).
A. Prevost, D.A. Egolf, J.S. Urbach, Phys. Rev. Lett. 89, 084301 (2002).
K. Feitosa, N. Menon, Phys. Rev. Lett. 92, 164301 (2004).
S. Jung, P.J. Morrison, H.L. Swinney, J. Fluid Mech. 554, 433 (2006).
A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, E. Bodenschatz, Nature 409, 1017 (2001).
M.M. Bandi, C. Connaughton, Phys. Rev. E 77, 036318 (2008).
S. Ratynskaia, G. Regnoli, K. Rypdal, B. Klumov, G. Morfill, Phys. Rev. E 80, 046404 (2009).
S. Ciliberto, L. Laroche, J. Phys. IV 8, Pr6-215 (1998).
N. Kumar, S. Ramaswamy, A.K. Sood, Phys. Rev. Lett. 106, 118001 (2011).
C. Beck, E.G.D. Cohen, H.L. Swinney, Phys. Rev. E 72, 056133 (2005).
E. Van der Straeten, C. Beck, Phys. Rev. E 80, 036108 (2009).
J.S. van Zon, F.C. MacKintosh, Phys. Rev. Lett. 93, 038001 (2004).
T.K. Caughey, J.K. Dienes, J. Appl. Phys. 32, 2476 (1961).
B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009).
N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. U.S.A. 104, 10786 (2007).
K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).
D.S. Fisher, Phys. Rep. 301, 113 (1998).
D. Maugis, M. Barquins, in Adhesion 12, edited by K.W. Allen (Elsevier, London, 1988) p. 205.
M. Barquins, A.D. Roberts, J. Phys. D: Appl. Phys. 19, 547 (1986).
B.N.J. Persson, Eur. Phys. J. E 33, 327 (2010).
K.A. Grosch, Proc. R. Soc. London, Ser. A 274, 21 (1963).
K. Vorvolakos, M.K. Chaudhury, Langmuir 19, 6778 (2003).
A.I. Leonov, Wear 141, 137 (1990).
A.E. Filippov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 92, 135503-1 (2004).
B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000).
T.K. Caughey, J. Acoust. Soc. Am. 35, 1706 (1963).
J.M. Johnsen, A. Naess, in Proc. EURODYN’93- Structural Dynamics, edited by T. Moan (Balkema, Rotterdam, 1993) ISBN 90 5410336 1.
G. Ahmadi, Int. J. Engng. Sci. 21, 93 (1983).
S.H. Crandall, S.S. Lee, J.H. Williams Jr., J. Appl. Mech. 41, 1094 (1974).
P.G. de Gennes, J. Stat. Phys. 119, 953 (2005).
A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn 73, 2037 (2004).
A. Baule, E.G.D. Cohen, H. Touchette, Nonlinearity 24, 351 (2011).
H. Touchette, E. Van der Straeten, W. Just, J. Phys. A: Math. Theor. 43, 445002 (2010).
A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011).
M.A. Moser, W.D. Iwan, J. Sound Vib. 159, 223 (1992).
M.K. Chaudhury, S. Mettu, Langmuir 24, 6128 (2008).
J.A. Greenwood, K.L. Johnson, S.-H. Choi, M.K. Chaudhury, J. Phys. D: Appl. Phys. 42, 035301 (2009).
B. Lindner, New J. Phys. 9, 136 (2007) . Previously, Lindner suggested a similar scaling relation for diffusivity.
G. Boothroyd, Assembly Automation and Product Design (Marcel Dekker, Inc., New York, 1991).
K. Bohringer, V. Bhatt, K. Goldberg, ``Sensorless manipulation using transverse vibrations of a plate’’, in Robotics and Automation, Proc. IEEE 2, 1989 (1995).
T. Baumberger, L. Bureau, M. Busson, E. Falcon, B. Perrin, Rev. Sci. Instrum. 69, 2416 (1998).
I. Sánchez, F. Raynaud, J. Lanuza, B. Andreotti, E. Clement, I.S. Aranson, Phys. Rev. E 76, 060301 (2007).
M.H. Muser, Proc. Natl. Acad. Sci. U.S.A. 107, 1257 (2010).
L.Z. Prandtl, Angew Math. Mech. 8, 85 (1928).
D.T. Gillespie, Am. J. Phys. 64, 225 (1996).
S. Daniel, M.K. Chaudhury, P.-G. de Gennes, Langmuir 21, 4240 (2005).
D. Fleishman, Y. Asscher, M. Urbakh, J. Phys.: Condens. Matter 19, 096004 (2007).
P. Brunet, J. Eggers, R.D. Deegan, Phys. Rev. Lett. 99, 144501 (2007).
M. Eglin, M.A. Eriksson, R.W. Carpick, J. Appl. Phys. 88, 091913 (2006).
A. Buguin, F. Brochard, P.-G. de Gennes, Eur. Phys. J. E 19, 31 (2006).
S. Mettu, M.K. Chaudhury, Langmuir 27, 10327 (2011).
O. Zik, J. Stavans, Y. Rabin, Europhys. Lett. 17, 315 (1992).
G. D’Anna, P. Mayor, A. Barrat, V. Loreto, F. Nori, Nature 424, 909 (2003).
S. Andersson, A. Soderberg, S. Bjorklund, Tribol. Int. 40, 580 (2007).
E. Wandersman, R. Candelier, G. Debregeas, A. Prevost,arxiv.org/PS_cache/arxiv/pdf/1107/1107.2578v1.pdf.
J.R. Rice, A.L. Ruina, J. Appl. Mech. 50, 343 (1983).
J.H. Dieterich, J. Geophys. Res. 84, 2161 (1979).
J. R. Rice, N. Lapustaa, K. Ranjith, J. Mech. Phys. Solids 49, 1965 (2001).
M. Morishita, M. Kobayashi, T. Yamaguchi, M. Doi, J. Phys.: Condens. Matter 22, 365104 (2010).
R. De, A. Maybhate, G. Ananthakrishna, Phys. Rev. E 70, 046223 (2004).
P. Sharma, S. Ghosh, S. Bhattacharya, Nat. Phys. 4, 960 (2008).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Goohpattader, P.S., Mettu, S. & Chaudhury, M.K. Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate. Eur. Phys. J. E 34, 120 (2011). https://doi.org/10.1140/epje/i2011-11120-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2011-11120-x