Skip to main content
Log in

Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate

The European Physical Journal E Aims and scope Submit manuscript

Cite this article

Abstract

We study the rolling motion of a small solid sphere on a fibrillated rubber substrate in an external field in the presence of a Gaussian noise. From the nature of the drift and the evolution of the displacement fluctuation of the ball, it is evident that the rolling is controlled by a complex non-linear friction at a low velocity and a low noise strength (K), but by a linear kinematic friction at a high velocity and a high noise strength. This transition from a non-linear to a linear friction control of motion can be discerned from another experiment in which the ball is subjected to a periodic asymmetric vibration in conjunction with a random noise. Here, as opposed to that of a fixed external force, the rolling velocity decreases with the strength of the noise suggesting a progressive fluidization of the interface. A state (K) and rate (V) dependent friction model is able to explain both the evolution of the displacement fluctuation as well as the sigmoidal variation of the drift velocity with K. This research sets the stage for studying friction in a new way, in which it is submitted to a noise and then its dynamic response is studied using the tools of statistical mechanics. Although more works would be needed for a fuller realization of the above-stated goal, this approach has the potential to complement direct measurements of friction over several decades of velocities and other state variables. It is striking that the non-Gaussian displacement statistics as observed with the stochastic rolling is similar to that of a colloidal particle undergoing Brownian motion in contact with a soft microtubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. P.S. Goohpattader, M.K. Chaudhury, J. Chem. Phys. 133, 024702 (2010).

    Article  ADS  Google Scholar 

  2. P.S. Goohpattader, S. Mettu, M.K. Chaudhury, Langmuir 25, 9969 (2009).

    Article  Google Scholar 

  3. S. Mettu, M.K. Chaudhury, Langmuir 26, 8131 (2010).

    Article  Google Scholar 

  4. T.P.C. van Noije, M.H. Ernst, Granular Matter 1, 57 (1998).

    Article  Google Scholar 

  5. W. Losert, D.G.W. Cooper, J. Delour, A. Kudrolli, J.P. Gollub, Chaos 9, 682 (1999).

    Article  ADS  MATH  Google Scholar 

  6. X. Nie, E. Ben-Naim, S.Y. Chen, Europhys. Lett. 51, 679 (2000).

    Article  ADS  Google Scholar 

  7. A. Prevost, D.A. Egolf, J.S. Urbach, Phys. Rev. Lett. 89, 084301 (2002).

    Article  ADS  Google Scholar 

  8. K. Feitosa, N. Menon, Phys. Rev. Lett. 92, 164301 (2004).

    Article  ADS  Google Scholar 

  9. S. Jung, P.J. Morrison, H.L. Swinney, J. Fluid Mech. 554, 433 (2006).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, E. Bodenschatz, Nature 409, 1017 (2001).

    Article  ADS  Google Scholar 

  11. M.M. Bandi, C. Connaughton, Phys. Rev. E 77, 036318 (2008).

    Article  ADS  Google Scholar 

  12. S. Ratynskaia, G. Regnoli, K. Rypdal, B. Klumov, G. Morfill, Phys. Rev. E 80, 046404 (2009).

    Article  ADS  Google Scholar 

  13. S. Ciliberto, L. Laroche, J. Phys. IV 8, Pr6-215 (1998).

    Article  Google Scholar 

  14. N. Kumar, S. Ramaswamy, A.K. Sood, Phys. Rev. Lett. 106, 118001 (2011).

    Article  ADS  Google Scholar 

  15. C. Beck, E.G.D. Cohen, H.L. Swinney, Phys. Rev. E 72, 056133 (2005).

    Article  ADS  Google Scholar 

  16. E. Van der Straeten, C. Beck, Phys. Rev. E 80, 036108 (2009).

    Article  ADS  Google Scholar 

  17. J.S. van Zon, F.C. MacKintosh, Phys. Rev. Lett. 93, 038001 (2004).

    Article  ADS  Google Scholar 

  18. T.K. Caughey, J.K. Dienes, J. Appl. Phys. 32, 2476 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009).

    Article  ADS  Google Scholar 

  20. N.J. Glassmaker, A. Jagota, C.Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. U.S.A. 104, 10786 (2007).

    Article  ADS  Google Scholar 

  21. K.A. Dahmen, Y. Ben-Zion, J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).

    Article  ADS  Google Scholar 

  22. D.S. Fisher, Phys. Rep. 301, 113 (1998).

    Article  ADS  Google Scholar 

  23. D. Maugis, M. Barquins, in Adhesion 12, edited by K.W. Allen (Elsevier, London, 1988) p. 205.

  24. M. Barquins, A.D. Roberts, J. Phys. D: Appl. Phys. 19, 547 (1986).

    Article  ADS  Google Scholar 

  25. B.N.J. Persson, Eur. Phys. J. E 33, 327 (2010).

    Article  Google Scholar 

  26. K.A. Grosch, Proc. R. Soc. London, Ser. A 274, 21 (1963).

    Article  ADS  Google Scholar 

  27. K. Vorvolakos, M.K. Chaudhury, Langmuir 19, 6778 (2003).

    Article  Google Scholar 

  28. A.I. Leonov, Wear 141, 137 (1990).

    Article  MathSciNet  Google Scholar 

  29. A.E. Filippov, J. Klafter, M. Urbakh, Phys. Rev. Lett. 92, 135503-1 (2004).

    Article  ADS  Google Scholar 

  30. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000).

  31. T.K. Caughey, J. Acoust. Soc. Am. 35, 1706 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  32. J.M. Johnsen, A. Naess, in Proc. EURODYN’93- Structural Dynamics, edited by T. Moan (Balkema, Rotterdam, 1993) ISBN 90 5410336 1.

  33. G. Ahmadi, Int. J. Engng. Sci. 21, 93 (1983).

    Article  MATH  Google Scholar 

  34. S.H. Crandall, S.S. Lee, J.H. Williams Jr., J. Appl. Mech. 41, 1094 (1974).

    Article  ADS  Google Scholar 

  35. P.G. de Gennes, J. Stat. Phys. 119, 953 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A. Kawarada, H. Hayakawa, J. Phys. Soc. Jpn 73, 2037 (2004).

    Article  ADS  MATH  Google Scholar 

  37. A. Baule, E.G.D. Cohen, H. Touchette, Nonlinearity 24, 351 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. H. Touchette, E. Van der Straeten, W. Just, J. Phys. A: Math. Theor. 43, 445002 (2010).

    Article  ADS  Google Scholar 

  39. A.M. Menzel, N. Goldenfeld, Phys. Rev. E 84, 011122 (2011).

    Article  ADS  Google Scholar 

  40. M.A. Moser, W.D. Iwan, J. Sound Vib. 159, 223 (1992).

    Article  ADS  MATH  Google Scholar 

  41. M.K. Chaudhury, S. Mettu, Langmuir 24, 6128 (2008).

    Article  Google Scholar 

  42. J.A. Greenwood, K.L. Johnson, S.-H. Choi, M.K. Chaudhury, J. Phys. D: Appl. Phys. 42, 035301 (2009).

    Article  ADS  Google Scholar 

  43. B. Lindner, New J. Phys. 9, 136 (2007) . Previously, Lindner suggested a similar scaling relation for diffusivity.

    Article  ADS  Google Scholar 

  44. G. Boothroyd, Assembly Automation and Product Design (Marcel Dekker, Inc., New York, 1991).

  45. K. Bohringer, V. Bhatt, K. Goldberg, ``Sensorless manipulation using transverse vibrations of a plate’’, in Robotics and Automation, Proc. IEEE 2, 1989 (1995).

  46. T. Baumberger, L. Bureau, M. Busson, E. Falcon, B. Perrin, Rev. Sci. Instrum. 69, 2416 (1998).

    Article  ADS  Google Scholar 

  47. I. Sánchez, F. Raynaud, J. Lanuza, B. Andreotti, E. Clement, I.S. Aranson, Phys. Rev. E 76, 060301 (2007).

    Article  Google Scholar 

  48. M.H. Muser, Proc. Natl. Acad. Sci. U.S.A. 107, 1257 (2010).

    Article  ADS  Google Scholar 

  49. L.Z. Prandtl, Angew Math. Mech. 8, 85 (1928).

    Article  MATH  Google Scholar 

  50. D.T. Gillespie, Am. J. Phys. 64, 225 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Daniel, M.K. Chaudhury, P.-G. de Gennes, Langmuir 21, 4240 (2005).

    Article  Google Scholar 

  52. D. Fleishman, Y. Asscher, M. Urbakh, J. Phys.: Condens. Matter 19, 096004 (2007).

    Article  ADS  Google Scholar 

  53. P. Brunet, J. Eggers, R.D. Deegan, Phys. Rev. Lett. 99, 144501 (2007).

    Article  ADS  Google Scholar 

  54. M. Eglin, M.A. Eriksson, R.W. Carpick, J. Appl. Phys. 88, 091913 (2006).

    Google Scholar 

  55. A. Buguin, F. Brochard, P.-G. de Gennes, Eur. Phys. J. E 19, 31 (2006).

    Article  Google Scholar 

  56. S. Mettu, M.K. Chaudhury, Langmuir 27, 10327 (2011).

    Article  Google Scholar 

  57. O. Zik, J. Stavans, Y. Rabin, Europhys. Lett. 17, 315 (1992).

    Article  ADS  Google Scholar 

  58. G. D’Anna, P. Mayor, A. Barrat, V. Loreto, F. Nori, Nature 424, 909 (2003).

    Article  ADS  Google Scholar 

  59. S. Andersson, A. Soderberg, S. Bjorklund, Tribol. Int. 40, 580 (2007).

    Article  Google Scholar 

  60. E. Wandersman, R. Candelier, G. Debregeas, A. Prevost,arxiv.org/PS_cache/arxiv/pdf/1107/1107.2578v1.pdf.

  61. J.R. Rice, A.L. Ruina, J. Appl. Mech. 50, 343 (1983).

    Article  ADS  MATH  Google Scholar 

  62. J.H. Dieterich, J. Geophys. Res. 84, 2161 (1979).

    Article  ADS  Google Scholar 

  63. J. R. Rice, N. Lapustaa, K. Ranjith, J. Mech. Phys. Solids 49, 1965 (2001).

    Article  Google Scholar 

  64. M. Morishita, M. Kobayashi, T. Yamaguchi, M. Doi, J. Phys.: Condens. Matter 22, 365104 (2010).

    Article  Google Scholar 

  65. R. De, A. Maybhate, G. Ananthakrishna, Phys. Rev. E 70, 046223 (2004).

    Article  ADS  Google Scholar 

  66. P. Sharma, S. Ghosh, S. Bhattacharya, Nat. Phys. 4, 960 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Chaudhury.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goohpattader, P.S., Mettu, S. & Chaudhury, M.K. Stochastic rolling of a rigid sphere in weak adhesive contact with a soft substrate. Eur. Phys. J. E 34, 120 (2011). https://doi.org/10.1140/epje/i2011-11120-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11120-x

Keywords

Navigation