Advertisement

Rheological behaviour of polyoxometalate-doped lyotropic lamellar phases

  • J. P. de Silva
  • A. S. Poulos
  • B. Pansu
  • P. Davidson
  • B. Kasmi
  • D. Petermann
  • S. Asnacios
  • F. Meneau
  • M. Impéror
Regular Article

Abstract.

We study the influence of nanoparticle doping on the lyotropic liquid crystalline phase of the industrial surfactant Brij30 ( C12E4 and water, doped with spherical polyoxometalate nanoparticles smaller than the characteristic dimensions of the host lamellar phase. We present viscometry and in situ rheology coupled with small-angle X-ray scattering data that show that, with increasing doping concentration, the nanoparticles act to decrease the shear viscosity of the lamellar phase, and that a shear-induced transition to a multilamellar vesicle “onion” phase is pushed to higher shear rates, and in some cases completely suppressed. X-ray data reveal that the nanoparticles remain encapsulated within the membranes of the vesicles, thus indicating a viable method for the fabrication of nanoparticle incorporating organic vesicles.

Keywords

Surfactant Shear Rate High Shear Rate Lamellar Phase Interlamellar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999) pp. 3-4Google Scholar
  2. 2.
    O. Diat, D. Roux, J. Phys. II 3, 9 (1993)CrossRefGoogle Scholar
  3. 3.
    O. Diat, D. Roux, F. Nallet, J. Phys. II 3, 1427 (1993)CrossRefGoogle Scholar
  4. 4.
    D. Roux, F. Nallet, O. Diat, Europhys. Lett. 1, 53 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    C. Meyer, S. Asnacios, M. Kléman, Eur. Phys. J. E 6, 245 (2001)CrossRefGoogle Scholar
  6. 6.
    P. Oswald, M. Kléman, J. Phys. (Paris) Lett. 12, L411 (1982)Google Scholar
  7. 7.
    J.F. Keggin, Proc. R. Soc. London, Ser. A 144, 75 (1934)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Poulos, D. Constantin, P. Davidson, M. Impéror, B. Pansu, P. Panine, L. Nicole, C. Sanchez, Langmuir 24, 6285 (2008)CrossRefGoogle Scholar
  9. 9.
    A.S. Poulos, D. Constantin, P. Davidson, M. Impéror, P. Judeinstein, B. Pansu, J. Phys. Chem. B 114, 220 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Müller, C. Börschig, W. Gronski, C. Schmidt, D. Roux, Langmuir 15, 7558 (1999)CrossRefGoogle Scholar
  11. 11.
    C. Oliviero, L. Coppola, R. Gianferri, I. Nicotera, U. Olsson, Colloids Surf. A 228, 85 (2003)CrossRefGoogle Scholar
  12. 12.
    Y. Kosaka, M. Ito, Y. Kawabata, T. Kato, Langmuir 26, 3835 (2010)CrossRefGoogle Scholar
  13. 13.
    H.E. Warriner, S.H. Idziak, N.L. Slack, P. Davidson, C.R. Safinya, Science 271, 969 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Keller, H.E. Warriner, C.R. Safinya, J.A. Zasadzinski, Phys. Rev. Lett. 78, 4781 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    J. Berghausen, J. Zipfel, P. Lindner, W. Richtering, J. Phys. Chem. B 105, 11081 (2001)CrossRefGoogle Scholar
  16. 16.
    V. Ponsinet, P. Fabre, J. Phys. II 6, 955 (1996)CrossRefGoogle Scholar
  17. 17.
    J. Arrault, C. Grand, W.C.K. Poon, M.E. Cates, Europhys. Lett. 38, 625 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Suganuma, M. Imai, K. Nakaya, J. Appl. Crystallogr. 40, s303 (2007)CrossRefGoogle Scholar
  19. 19.
    F. Nettesheim, I. Grillo, P. Lindner, W. Richtering, Langmuir 20, 3947 (2004)CrossRefGoogle Scholar
  20. 20.
    D.J. Mitchell, G.J.T. Tiddy, L. Waring, T. Bostock, M.P. McDonald, Faraday Trans. I 79, 975 (1983)CrossRefGoogle Scholar
  21. 21.
    J.P. de Silva, D. Petermann, B. Kasmi, M. Imperor, P. Davidson, B. Pansu, F. Meneau, J. Perez, E. Paineau, I. Bihannic, L. Michot, C. Baravian, J. Phys. Conf. Ser. 247, 012052 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    We use a pre-shear treatment rather than a quench into the low-temperature isotropic region of the phase diagram muller, as at 50% surfactant concentration there is no low-temperature lamellar-isotropic phase transition, as seen in the C_12E_4 phase diagram daffy and confirmed by observations of cross-polarised optical texture after a quench to 0^CGoogle Scholar
  23. 23.
    B. Medronho, M. Miguel, U. Olsson, Langmuir 23, 5270 (2007)CrossRefGoogle Scholar
  24. 24.
    F. Nettesheim, J. Zipfel, P. Lindner, W. Richtering, Colloids Surf. A 183-185, 563 (2001)CrossRefGoogle Scholar
  25. 25.
    O. Diat, D. Roux, F. Nallet, Phys. Rev. E 51, 3296 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    F. Nettesheim, J. Zipfel, U. Olsson, F. Renth, P. Lindner, W. Richtering, Langmuir 19, 3603 (2003)CrossRefGoogle Scholar
  27. 27.
    A.S. Poulos, PhD thesis (2009)Google Scholar
  28. 28.
    S. Paasch, F. Schambil, M.J. Schwuger, Langmuir 5, 1344 (1989)CrossRefGoogle Scholar
  29. 29.
    J. Munoz, C. Gallegos, V. Flores, J. Disp. Sci. Technol. 7, 453 (1986)CrossRefGoogle Scholar
  30. 30.
    P. Panizza, D. Roux, V. Vuillaume, C.-Y.D. Lu, M.E. Cates, Langmuir 12, 248 (1996)CrossRefGoogle Scholar
  31. 31.
    R.G. Horn, M. Kleman, Ann. Phys. (Paris) 3, 229 (1978)Google Scholar
  32. 32.
    P. Versluis, J.C. van de Pas, J. Mellema, Langmuir 13, 5732 (1997)CrossRefGoogle Scholar
  33. 33.
    J. Bergenholtz, N.J. Wagner, Langmuir 12, 3122 (1996)CrossRefGoogle Scholar
  34. 34.
    P. Partal, A.J. Kowalski, D. Machin, N. Kiratzis, M.G. Berni, C.J. Lawrence, Langmuir 17, 1331 (2001)CrossRefGoogle Scholar
  35. 35.
    Shear viscosities measured here for the pure undoped lamellar phase at 40% surfactant concentration are around an order of magnitude higher than those given by Müller for a pure 40% C_12E_4 lamellar phase at equivalent shear rates muller. We can identify two reasons for this: previous experiments demonstrate that there is a clear effect of the nature of the cell material and surface roughness oopsGoogle Scholar
  36. 36.
    C.-Y.D. Lu, P. Chen, Y. Ishii, S. Komura, T. Kato, Eur. Phys. J. E 25, 91 (2008)CrossRefGoogle Scholar
  37. 37.
    L. Courbin, P. Panizza, Phys. Rev. E 69, 021504 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    J.T. Brooks, C.M. Marques, M.E. Cates, J. Phys. II 1, 673 (1991)CrossRefGoogle Scholar
  39. 39.
    M.-F. Ficheux, A.-M. Bellocq, F. Nallet, Eur. Phys. J. E 4, 315 (2001)CrossRefGoogle Scholar
  40. 40.
    A. Lutti, P.T. Callaghan, Eur. Phys. J. E 24, 129 (2007)CrossRefGoogle Scholar
  41. 41.
    A. Leon, D. Bonn, J. Meunier, J. Phys.: Condens. Matter 14, 4785 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    T. Gulik-Krzywicki, J.C. Dedieu, D. Roux, C. Degert, R. Laversanne, Langmuir 12, 4668 (1996)CrossRefGoogle Scholar
  43. 43.
    N. Jager-Lézer, J.F. Tranchant, V. Alard, J. Doucet, J.L. Groissiord, J. Rheol. 42, 417 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. P. de Silva
    • 1
  • A. S. Poulos
    • 1
  • B. Pansu
    • 1
  • P. Davidson
    • 1
  • B. Kasmi
    • 1
  • D. Petermann
    • 1
  • S. Asnacios
    • 2
  • F. Meneau
    • 3
  • M. Impéror
    • 1
  1. 1.Laboratoire de Physique des Solides-UMR 8502-Université Paris-SudOrsayFrance
  2. 2.Laboratoire Matière et Systèmes Complexes-10 rue Alice Domon et Lonie DuquetParisFrance
  3. 3.SOLEIL Synchrotron-L’Orme des Merisiers Saint-AubinGif-sur-YvetteFrance

Personalised recommendations