Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. The European Physical Journal E
  3. Article

Understanding and predicting viscous, elastic, plastic flows

  • Regular Article
  • Open access
  • Published: 07 January 2011
  • Volume 34, article number 1, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

The European Physical Journal E Aims and scope Submit manuscript
Understanding and predicting viscous, elastic, plastic flows
Download PDF
  • I. Cheddadi1,2,
  • P. Saramito1,
  • B. Dollet2,3,
  • C. Raufaste2,4 &
  • …
  • F. Graner2,5 
  • 1781 Accesses

  • 126 Citations

  • 5 Altmetric

  • Explore all metrics

Abstract.

Foams, gels, emulsions, polymer solutions, pastes and even cell assemblies display both liquid and solid mechanical properties. On a local scale, such “soft glassy” systems are disordered assemblies of deformable rearranging units, the complexity of which gives rise to their striking flow behaviour. On a global scale, experiments show that their mechanical behaviour depends on the orientation of their elastic deformation with respect to the flow direction, thus requiring a description by tensorial equations for continuous materials. However, due to their strong non-linearities, the numerous candidate models have not yet been solved in a general multi-dimensional geometry to provide stringent tests of their validity. We compute the first solutions of a continuous model for a discriminant benchmark, namely the flow around an obstacle. We compare it with experiments of a foam flow and find an excellent agreement with the spatial distribution of all important features: we accurately predict the experimental fields of velocity, elastic deformation, and plastic deformation rate in terms of magnitude, direction, and anisotropy. We analyse the role of each parameter, and demonstrate that the yield strain is the main dimensionless parameter required to characterize the materials. We evidence the dominant effect of elasticity, which explains why the stress does not depend simply on the shear rate. Our results demonstrate that the behaviour of soft glassy materials cannot be reduced to an intermediate between that of a solid and that of a liquid: the viscous, the elastic and the plastic contributions to the flow, as well as their couplings, must be treated simultaneously. Our approach opens the way to the realistic multi-dimensional prediction of complex flows encountered in geophysical, industrial and biological applications, and to the understanding of the link between structure and rheology of soft glassy systems.

Article PDF

Download to read the full article text

Similar content being viewed by others

A simple microstructural viscoelastic model for flowing foams

Article 28 April 2018

Numerical simulations of complex yield-stress fluid flows

Article 01 December 2016

Quasi-Two-Dimensional Foam Flowthrough and Around a Permeable Obstacle

Chapter © 2023

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.
  • Polymers
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P. Coussot, Rheometry of Pastes, Suspensions and Granular Materials (Wiley, 2005)

  2. D. Csontos, Nature 464, 175 (2010)

    Article  ADS  Google Scholar 

  3. G. Ovarlez, Q. Barral, P. Coussot, Nature Mater. 9, 115 (2010)

    Article  ADS  Google Scholar 

  4. P. Sollich, Phys. Rev. E 58, 738 (1998)

    Article  ADS  Google Scholar 

  5. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  6. M.E. Cates, P. Sollich, J. Rheol. 48, 193 (2004)

    Article  ADS  Google Scholar 

  7. P. Marmottant, C. Raufaste, F. Graner, Eur. Phys. J. E 25, 371 (2008)

    Article  Google Scholar 

  8. P. Marmottant, A. Mgharbel, J. Käfer, B. Audren, J.P. Rieu, J.C. Vial, B. van der Sanden, A.F.M. Marée, F. Graner, H. Delanoë-Ayari, Proc. Natl. Acad. Sci. U.S.A. 106, 17271 (2009)

    Article  ADS  Google Scholar 

  9. T. Okuzono, K. Kawasaki, Phys. Rev. E 51, 1246 (1995)

    Article  ADS  Google Scholar 

  10. E. Pratt, M. Dennin, Phys. Rev. E 67, 051402 (2003)

    Article  ADS  Google Scholar 

  11. B. Dollet, F. Graner, J. Fluid Mech. 585, 181 (2007)

    Article  ADS  MATH  Google Scholar 

  12. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2000)

  13. I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Höhler, O. Pitois, F. Rouyer, A. Saint-Jalmes, Les Mousses - Structure et Dynamique (Collection Echelles, Belin, 2010)

  14. R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005)

    Article  ADS  Google Scholar 

  15. P. Marmottant, F. Graner, Eur. Phys. J. E 23, 337 (2007)

    Article  Google Scholar 

  16. N.D. Denkov, S. Tcholakova, K. Golemanov, K.P. Ananthpadmanabhan, A. Lips, Soft Matter 5, 3389 (2009)

    Article  ADS  Google Scholar 

  17. G. Katgert, M.E. Möbius, M. van Hecke, Phys. Rev. Lett. 101, 058301 (2008)

    Article  ADS  Google Scholar 

  18. E. Janiaud, D. Weaire, S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006)

    Article  ADS  Google Scholar 

  19. S. Benito, C.H. Bruneau, T. Colin, C. Gay, F. Molino, Eur. Phys. J. E 25, 225 (2008)

    Article  Google Scholar 

  20. L. Preziosi, D. Ambrosi, C. Verdier, J. Theor. Biol. 262, 35 (2010)

    Article  Google Scholar 

  21. P. Saramito, J. Non-Newtonian Fluid Mech. 145, 1 (2007)

    Article  MATH  Google Scholar 

  22. J.M. Brader, M.E. Cates, M. Fuchs, Phys. Rev. Lett. 101, 138301 (2008)

    Article  ADS  Google Scholar 

  23. J.M. Brader, T. Voigtmann, M. Fuchs, R.G. Larson, M.E. Cates, Proc. Natl. Acad. Sci. U.S.A. 106, 15186 (2009)

    Article  ADS  Google Scholar 

  24. P.D. Olmsted, O. Radulescu, C.Y.D. Lu, J. Rheol. 44, 257 (2000)

    Article  ADS  Google Scholar 

  25. L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 036001 (2009)

    Article  ADS  Google Scholar 

  26. E.C. Bingham, Fluidity and Plasticity (McGraw-Hill, 1922)

  27. W.H. Herschel, T. Bulkley, Am. Soc. Test Proc. 26, 621 (1926)

    Google Scholar 

  28. J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet, Nature 454, 84 (2008)

    Article  ADS  Google Scholar 

  29. J. Goyon, A. Colin, L. Bocquet, Soft Matter 6, 2668 (2010)

    Article  ADS  Google Scholar 

  30. T. Gibaud, C. Barentin, S. Manneville, Phys. Rev. Lett. 101, 258302 (2008)

    Article  ADS  Google Scholar 

  31. G.G. Stokes, Cambr. Philos. Soc. Trans. 9, 8 (1851)

    ADS  Google Scholar 

  32. H. Tabuteau, P. Coussot, J. de Bruyn, J. Rheol. 51, 125137 (2007)

    Article  Google Scholar 

  33. N. Roquet, P. Saramito, Comput. Appl. Meth. Mech. Eng. 192, 3317 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.G. Oldroyd, Proc. R. Soc. London, Ser. A 200, 523 (1950)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. G. Debrégeas, H. Tabuteau, J.M. di Meglio, Phys. Rev. Lett. 87, 178305 (2001)

    Article  ADS  Google Scholar 

  36. Y. Wang, K. Krishan, M. Dennin, Phys. Rev. E 73, 031401 (2006)

    Article  ADS  Google Scholar 

  37. I. Cheddadi, Ph.D. thesis, Université de Grenoble, http://tel.archives-ouvertes.fr/tel-00497436/en/ (2010)

  38. I. Cheddadi, P. Saramito, C. Raufaste, P. Marmottant, F. Graner, Eur. Phys. J. E 27, 123 (2008)

    Article  Google Scholar 

  39. I. Cheddadi, P. Saramito, C. Raufaste, P. Marmottant, F. Graner, Eur. Phys. J. E 28, 479 (2009)

    Article  Google Scholar 

  40. D. Weaire, N. Rivier, Contemp. Phys. 25, 59 (1984)

    Article  ADS  Google Scholar 

  41. M. Durand, H.A. Stone, Phys. Rev. Lett. 97, 226101 (2006)

    Article  ADS  Google Scholar 

  42. R.J. Gordon, W.R. Schowalter, J. Rheol. 16, 79 (1972)

    Article  ADS  MATH  Google Scholar 

  43. C. Raufaste, Ph.D. thesis, Université de Grenoble, http://tel.archives-ouvertes.fr/tel-00193248/en/ (2007)

  44. E. Janiaud, F. Graner, J. Fluid Mech. 532, 243 (2005)

    Article  ADS  MATH  Google Scholar 

  45. P. Saramito, J. Non Newtonian Fluid Mech. 60, 199 (1995)

    Article  Google Scholar 

  46. P. Lesaint, P.A. Raviart, A finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, edited by C. Boor (Academic Press, New York, 1974) pp. 89-123.

  47. B. Dollet, I. Cantat, J. Fluid Mech. 652, 529 (2010)

    Article  ADS  MATH  Google Scholar 

  48. M.E. Möbius, G. Katgert, M. van Hecke, EPL 90, 44003 (2010)

    Article  ADS  Google Scholar 

  49. M.T. Arigo, G.H. McKinley, Rheol. Acta 37, 307 (1998)

    Article  Google Scholar 

  50. H.S. Dou, N. Phan-Thien, Rheol. Acta 42, 383 (2003)

    Article  Google Scholar 

  51. A. Afonso, M. Alves, F. Pinho, P. Oliveira, Rheol. Acta 47, 325 (2008)

    Article  Google Scholar 

  52. B. Dollet, J. Rheol. 54, 741 (2010)

    Article  ADS  Google Scholar 

  53. P. Saramito, J. Non Newtonian Fluid Mech. 158, 154 (2009)

    Article  Google Scholar 

  54. G. Katgert, A. Latka, M.E. Möbius, M. van Hecke, Phys. Rev. E 79, 066318 (2009)

    Article  ADS  Google Scholar 

  55. G. Katgert, B.P. Tighe, M.E. Möbius, M. van Hecke, EPL 90, 54002 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratoire Jean Kuntzmann, UMR 5524 Université J. Fourier - Grenoble I and CNRS, BP 53, F-38041, Grenoble cedex 09, France

    I. Cheddadi & P. Saramito

  2. Laboratoire de Spectrométrie Physique, UMR 5588 Université J. Fourier - Grenoble I and CNRS, BP 87, F-38402, Martin d’Hères cedex, France

    I. Cheddadi, B. Dollet, C. Raufaste & F. Graner

  3. Institut de Physique de Rennes, UMR 6251 Université Rennes 1 and CNRS, Campus Beaulieu, Bâtiment 11A, F-35042, Rennes cedex, France

    B. Dollet

  4. Physics of Geological Processes, University of Oslo, Sem Selands vei 24, NO-0316, Oslo, Norway

    C. Raufaste

  5. BDD, Institut Curie, CNRS UMR 3215 and INSERM U 934, 26 rue d’Ulm, F-75248, Paris cedex 05, France

    F. Graner

Authors
  1. I. Cheddadi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. P. Saramito
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. B. Dollet
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. C. Raufaste
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. F. Graner
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to F. Graner.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Cheddadi, I., Saramito, P., Dollet, B. et al. Understanding and predicting viscous, elastic, plastic flows. Eur. Phys. J. E 34, 1 (2011). https://doi.org/10.1140/epje/i2011-11001-4

Download citation

  • Received: 11 July 2010

  • Accepted: 30 November 2010

  • Published: 07 January 2011

  • DOI: https://doi.org/10.1140/epje/i2011-11001-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Foam
  • Shear Rate
  • Elastic Deformation
  • Liquid Fraction
  • Yield Strain
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

65.109.116.201

Not affiliated

Springer Nature

© 2025 Springer Nature