Skip to main content

Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting

Abstract.

Thin films of polymer mixtures made by spin-coating can phase separate in two ways: by forming lateral domains, or by separating into distinct layers. The latter situation (self-stratification or vertical phase separation) could be advantageous in a number of practical applications, such as polymer optoelectronics. We demonstrate that, by controlling the evaporation rate during the spin-coating process, we can obtain either self-stratification or lateral phase separation in the same system, and we relate this to a previously hypothesised mechanism for phase separation during spin-coating in thin films, according to which a transient wetting layer breaks up due to a Marangoni-type instability driven by a concentration gradient of solvent within the drying film. Our results show that rapid evaporation leads to a laterally phase-separated structure, while reducing the evaporation rate suppresses the interfacial instability and leads to a self-stratified final film.

This is a preview of subscription content, access via your institution.

References

  1. A.C. Arias, N. Corcoran, M. Banach, R.H. Friend, J.D. MacKenzie, W.T.S. Huck, Appl. Phys. Lett. 80, 1695 (2002)

    Article  ADS  Google Scholar 

  2. H. Sirringhaus, N. Tessler, R.H. Friend, Science 280, 1741 (1998)

    Article  ADS  Google Scholar 

  3. B. Bikson, J.K. Nelson, N. Muruganandam, J. Membr. Sci. 94, 313 (1994)

    Article  Google Scholar 

  4. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, Macromolecules 30, 4995 (1997)

    Article  ADS  Google Scholar 

  5. S.Y. Heriot, R.A.L. Jones, Nat. Mater. 4, 782 (2005)

    Article  ADS  Google Scholar 

  6. M. Souche, N. Clarke, Eur. Phys. J. E 28, 47 (2009)

    Article  Google Scholar 

  7. S. Hüttner, M. Sommer, A. Chiche, G. Krausch, U. Steiner, M. Thelakkat, Soft Matter 5, 4206 (2009)

    Article  Google Scholar 

  8. S. Park, B. Kim, O. Yavuzcetin, M.T. Tuominen, T.P. Russell, ACS Nano 2, 1363 (2008)

    Article  Google Scholar 

  9. J.K. Bosworth, M.Y. Paik, R. Ruiz, E.L. Schwartz, J.Q. Huang, A.W. Ko, J.Q. Huang, D.M. Smilgies, C.T. Black, C.K. Ober, ACS Nano 2, 1396 (2008)

    Article  Google Scholar 

  10. P.G. de Gennes, Eur. Phys. J. E 6, 421 (2001)

    Article  Google Scholar 

  11. P.C. Birnie, M. Manley, Phys. Fluids 9, 870 (1997)

    Article  ADS  Google Scholar 

  12. K.E. Strawhecker, S.K. Kumar, J.F. Douglas, A. Karim, Macromolecules 34, 4669 (2001)

    Article  ADS  Google Scholar 

  13. J. Jaczewska, A. Budkowski, A. Bernasik, I. Raptis, J. Raczkowska, D. Goustouridis, J. Rysz, M. Sanopoulou, J. Appl. Polym. Sci. 105, 67 (2007)

    Article  Google Scholar 

  14. D.E. Haas, D.P. Birnie III, J. Mater. Sci. 37, 2109 (2002)

    Article  Google Scholar 

  15. P.C. Jukes, S.Y. Heriot, J.S. Sharp, R.A.L. Jones, Macromolecules 38, 2030 (2005)

    Article  ADS  Google Scholar 

  16. Y.A. Akpalu, A. Karim, S.K. Satija, N.P. Balsara, Macromolecules 34, 1720 (2001)

    Article  ADS  Google Scholar 

  17. F. Bruder, R. Brenn, Phys. Rev. Lett. 69, 624 (1992)

    Article  ADS  Google Scholar 

  18. A. Budkowski, A. Bernasik, P. Cyganik, J. Rysz, R. Brenn, e-Polymers 006, 1 (2002)

    Google Scholar 

  19. J. Genzer, E.J. Kramer, Phys. Rev. Lett. 78, 4946 (1997)

    Article  ADS  Google Scholar 

  20. M. Geoghegan, H. Ermer, G. Jüngst, G. Krausch, R. Brenn, Phys. Rev. E 62, 940 (2000)

    Article  ADS  Google Scholar 

  21. M. Geoghegan, G. Krausch, Prog. Polym. Sci. 28, 261 (2003)

    Article  Google Scholar 

  22. A. Budkowski, Adv. Polym. Sci. 148, 1 (1999)

    Article  Google Scholar 

  23. R.A.L. Jones, L.J. Norton, E.J. Kramer, F.S. Bates, P. Wiltzius, Phys. Rev. Lett. 66, 1326 (1991)

    Article  ADS  Google Scholar 

  24. G. Krausch, Mater. Sci. Eng. R14, 1 (1995)

    Google Scholar 

  25. G. Krausch, C.A. Dai, E.J. Kramer, F.S. Bates, Phys. Rev. Lett. 71, 3669 (1993)

    Article  ADS  Google Scholar 

  26. G. Krausch, C.A. Dai, E.J. Kramer, J.F. Marko, F.S. Bates, Macromolecules 26, 5566 (1993)

    Article  ADS  Google Scholar 

  27. M.J. Block, Nature 178, 650 (1956)

    Article  ADS  Google Scholar 

  28. J.R.A. Pearson, J. Fluid Mech. 4, 489 (1958)

    MATH  Article  ADS  Google Scholar 

  29. M. Geoghegan, in Polymer Surfaces and Interfaces III, edited by R.W. Richards, S.K. Peace (Wiley, Chichester, 1999) pp. 43--73

  30. N.P. Barradas, C. Jeynes, R.P. Webb, Appl. Phys. Lett. 71, 291 (1997)

    Article  ADS  Google Scholar 

  31. D. Meyerhofer, J. Appl. Phys. 4, 3993 (1978)

    Article  ADS  Google Scholar 

  32. A.G. Emslie, F.T. Bonner, L.G. Peck, J. Appl. Phys. 29, 858 (1958)

    MATH  Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mokarian-Tabari, P., Geoghegan, M., Howse, J.R. et al. Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: Control of film structure through defined-atmosphere solvent-casting. Eur. Phys. J. E 33, 283–289 (2010). https://doi.org/10.1140/epje/i2010-10670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10670-7

Keywords

  • PMMA
  • Evaporation Rate
  • Solvent Concentration
  • Interfacial Instability
  • Nuclear Reaction Analysis