Abstract.
The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals \( \pi\)/2 , a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free-energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.
This is a preview of subscription content, access via your institution.
References
P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)
J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)
K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)
R. Bubeck, C. Bechinger, S. Neser, P. Leiderer, Phys. Rev. Lett. 82, 3364 (1999)
N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)
L.E. Helseth, R.M. Muruganathan, Y. Zhang, T.M. Fischer, Langmuir 21, 7271 (2005)
J. Aizenberg, P.V. Braun, P. Wiltzius, Phys. Rev. Lett. 84, 2997 (2000)
J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)
S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)
A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)
M. Chavez-Paez, P. Gonzalez-Mozuelos, M. Medina-Noyola, J.M. Mendez-Alcaraz, J. Chem. Phys. 119, 7461 (2003)
P.X. Viveros-Mendez, J.M. Mendez-Alcaraz, P. Gonzalez-Mozuelosa, J. Chem. Phys. 128, 014701 (2008)
A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)
J. Ruiz-Garcia, R. Gamez-Corrales, B.I. Ivlev, Phys. Rev. E 58, 660 (1998)
F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)
F. Ghezzi, J.C. Earnshaw, M. Finnis, M. McCluney, J. Colloid Interface Sci. 238, 433 (2001)
R.P. Sear, S.W. Chung, G. Markovich, W.M. Gelbart, J.R. Heath, Phys. Rev. E 59, R6255 (1999)
M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D. Dinsmore, M.P. Brenner, D.A. Weitz, C. Gay, Nature 420, 299 (2002)
M.M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949)
P.A. Kralchevsky, V.N. Paunov, I.B. Ivanov, K. Nagayama, J. Colloid Interface Sci. 151, 79 (1992)
D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)
J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005)
M. Oettel, A. Domínguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)
A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 127, 204706 (2007)
H. Lehle, E. Noruzifar, M. Oettel, Eur. Phys. J. E 26, 151 (2008)
M. Megens, J. Aizenberg, Nature 424, 1014 (2003)
L. Foret, A. Würger, Phys. Rev. Lett. 92, 058302 (2004)
A. Domínguez, M. Oettel, S. Dietrich, J. Phys.: Condens. Matter 17, S3387 (2005)
K. Danov, P. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)
M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)
A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)
H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)
B.X. Cui, H. Diamant, B.H. Lin, Phys. Rev. Lett. 89, 188302 (2002)
A. Würger, EPL 75, 978 (2006)
A. Würger, Phys. Rev. E 74, 041402 (2006)
A. Domínguez, M. Oettel, S. Dietrich, EPL 77, 68002 (2007)
P.A. Kralchevsky, V.N. Paunov, K. Nagayama, J. Fluid Mech. 299, 105 (1995)
P.A. Kralchevsky, K. Nagayama, Particles at Fluid Interfaces (Elsevier, Amsterdam, 2001)
A. Sangani, C. Lu, K. Su, J. Schwarz, Phys. Rev. E 80, 011603 (2009)
L. Schimmele, M. Napiorkowski, S. Dietrich, J. Chem. Phys. 127, 164715 (2007)
A. Domínguez, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Àlvarez (CRC Press, Boca Raton, 2010), pp. 31--59
Interfacial gradients are of $O(1)$ only on the scale of $a$, which can be inferred from the following qualitative reasoning. For small deformations $u$ of a flat interface one has $\nabla_{\parallel} u \approx f/(2\pi\gamma r)$, where $r$ is the distance from the particle. Due to the stability condition $|f| \lesssim \gamma a$ (eq. (f_small2)), one has $|\nabla_{\parallel} u|\sim 1$ only for $r\sim a$. Nevertheless, one can still apply the linear theory by introducing the notion of an effective colloidal particle which encompasses the whole region with strong interfacial gradients. From the above reasoning it follows that the size of this effective particle is of the order of $a$. Therefore the free energy corresponding to this region is $\sim a^2$, i.e., it contributes only to the subleading term compared to the leading one $\sim f^2\ln(R_0/a)$ (for which we assume $f\sim a$)
J. Guzowski, PhD thesis, unpublished
R. Rosso, E.G. Virga, Phys. Rev. E 68, 012601 (2003)
M. Brinkmann, J. Kierfeld, R. Lipowsky, J. Phys. A: Math. Gen. 37, 11547 (2004)
J.D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975)
D.C. Morse, T.A. Witten, Europhys. Lett. 22, 549 (1993)
K. Brakke, Exp. Math. 1, 141 (1992)
L.A. Segel, Mathematics Applied to Continuum Mechanics (Dover, New York, 1987)
In calculating $\delta F$ we have ignored the correction $\delta x$, which also depends on $\alpha$ (see eq. (xcmu)), but gives a contribution of the order $(f^2/\gamma)\times O((a/R_0)^3)$
V. Blickle, J. Mehl, C. Bechinger, Phys. Rev. E 79, 060104 (2009)
I.I. Smalyukh, S. Chernyshuk, B.I. Lev, A.B. Nych, U. Ognysta, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004)
M. Oettel, A. Domínguez, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 28, 99 (2009)
D. Langbein, Capillary Surfaces, 2nd edition (Springer, Berlin, 2002)
A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 1, 2nd edition (Gordon and Breach, New York, 1986)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guzowski, J., Tasinkevych, M. & Dietrich, S. Free energy of colloidal particles at the surface of sessile drops. Eur. Phys. J. E 33, 219–242 (2010). https://doi.org/10.1140/epje/i2010-10667-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epje/i2010-10667-2
Keywords
- Free Energy
- Contact Angle
- Colloidal Particle
- Contact Line
- Volume Constraint