The European Physical Journal E

, Volume 33, Issue 2, pp 105–110 | Cite as

A mesoscopic description of contractile cytoskeletal meshworks

Regular Article


Epithelial morphogenesis plays a major role in embryonic development. During this process cells within epithelial sheets undergo complex spatial reorganization to form organs with specific shapes and functions. The dynamics of epithelial cell reorganization is driven by forces generated through the cytoskeleton, an active network of polar filaments and motor proteins. Over the relevant time scales, individual cytoskeletal filaments typically undergo turnover, where existing filaments depolymerize into monomers and new filaments are nucleated. Here we extend a previously developed physical description of the force generation by the cytoskeleton to account for the effects of filament turnover. We find that filament turnover can significantly stabilize contractile structures against rupture and discuss several possible routes to instability resulting in the rupture of the cytoskeletal meshwork. Additionally, we show that our minimal description can account for a range of phenomena that were recently observed in fruit fly epithelial morphogenesis.


Minimal Model Cytochalasin Force Density Physical Description Cytoskeletal Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Martinez, A. Stewart, Molecular Principles of Animal Development (Oxford University Press, Oxford, New York, 2002)Google Scholar
  2. 2.
    T. Lecuit, P.F. Lenne, Nature Rev. Mol. Cell Biol. 8, 633 (2007)CrossRefGoogle Scholar
  3. 3.
    A. Martin, M. Kaschube, E.F. Wieschaus, Nature 457, 495 (2008)CrossRefADSGoogle Scholar
  4. 4.
    A. Vincent, J.T. Blankenship, E. Wieschaus, Development 124, 3747 (1997)Google Scholar
  5. 5.
    H.E. Hinton, Annu. Rev. Entomol. 14, 343 (1969)CrossRefGoogle Scholar
  6. 6.
    P. Martin, J. Lewis, Nature 360, 179 (1992)CrossRefADSGoogle Scholar
  7. 7.
    D. Bray, Cell Movements: from Molecules to Motility, 2nd ed. (Garland, New York, 2001).Google Scholar
  8. 8.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001)Google Scholar
  9. 9.
    T.D. Pollard, G.G. Borisy, Cell 112, 453 (2003)CrossRefGoogle Scholar
  10. 10.
    D. Humphrey, C. Duggan, D. Saha, D. Smith, J. Käs, Nature 416, 413 (2002)CrossRefADSGoogle Scholar
  11. 11.
    K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)CrossRefADSGoogle Scholar
  12. 12.
    K. Kruse, F. Jülicher, Eur. Phys. J. E 20, 459 (2006)CrossRefGoogle Scholar
  13. 13.
    T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 90, 138102 (2003)CrossRefADSGoogle Scholar
  14. 14.
    I.S. Aronson, L.S. Tsimring, Phys. Rev. E 71, 050901 (2005)CrossRefADSGoogle Scholar
  15. 15.
    K. Doubrovinski, K. Kruse, Phys. Rev. Lett. 99, 228104 (2007)CrossRefADSGoogle Scholar
  16. 16.
    A. Martin, private communicationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA
  3. 3.Physics DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations