Skip to main content

Particles in model filled rubber: Dispersion and mechanical properties


We have been able to design model filled rubbers with exactly the same chemical structure but different filler arrangements. From these model systems, we show that the particle arrangement in the elastomeric matrix controls the strain softening at small strain amplitude known as the Payne effect, as well as the elastic modulus dependence on the temperature. More precisely, we observed that the Payne effect disappears and the elastic modulus only weakly depends on the temperature when the particles are well separated. On the contrary, samples with the same interfacial physical chemistry but with aggregated particles show large amplitudes of the Payne effect and their elastic modulus decreases significantly with the temperature. We discuss these effects in terms of glassy bridge formation between filler particles. The observed effects provide evidence that glassy bridges play a key role on the mechanical properties of filled rubbers.

This is a preview of subscription content, access via your institution.


  1. G. Heinrich, M. Kluppel, in Filled Elastomers Drug Delivery Systems, Vol. 160 of Adv. Polym. Sci. (Springer, Berlin, Heidelberg, 2002) pp. 1-44

  2. M. Wang, Rubber Chem. Technol. 71, 520 (1998)

    Google Scholar 

  3. L. Chazeau, J. Brown, L. Yanyo, S. Sternstein, Polym. Compos. 21, 202 (2000)

    Article  Google Scholar 

  4. M. Kluppel, in Filler-Reinforced Elastomers/Scanning Force Microscopy, Vol. 164 of Adv. Polym. Sci. (Springer, Berlin, Heidelberg, 2003) pp. 1-86

  5. A.R. Payne, J. Appl. Polym. Sci. 6, 368 (1962)

    Article  Google Scholar 

  6. A.R. Payne, W.F. Watson, Rubber Chem. Technol. 36, 147 (1963)

    Google Scholar 

  7. A.R. Payne, Reinforcement of Elastomers, edited by G. Kraus (Interscience, New-York, 1965)

  8. J.A.C. Harwood, L. Mullins, A.R. Payne, J. Appl. Polym. Sci. 9, 3011 (1965)

    Article  Google Scholar 

  9. J. Berriot, H. Montes, F. Lequeux, D. Long, P. Sotta, Macromolecules 35, 9756 (2002)

    Article  ADS  Google Scholar 

  10. J. Berriot, H. Montes, F. Lequeux, D. Long, P. Sotta, Europhys. Lett. 64, 50 (2003)

    Article  ADS  Google Scholar 

  11. D. Fryer, R. Peters, E. Kim, J. Tomaszewski, J. de Pablo, P. Nealey, C. White, W. Wu, Macromolecules 34, 5627 (2001)

    Article  ADS  Google Scholar 

  12. H. Montes, F. Lequeux, J. Berriot, Macromolecules 36, 8107 (2003)

    Article  ADS  Google Scholar 

  13. J. Berriot, H. Montes, F. Martin, M. Mauger, W. Pyckhout-Hintzen, G. Meier, H. Frielinghaus, Polymer 44, 4909 (2003)

    Article  Google Scholar 

  14. H. Sunkara, J. Jethmalani, W. Ford, Chem. Mater. 6, 362 (1994)

    Article  Google Scholar 

  15. J. Jethmalani, W. Ford, Chem. Mater. 8, 2138 (1996)

    Article  Google Scholar 

  16. J. Jethmalani, W. Ford, G. Beaucage, Langmuir 13, 3338 (1997)

    Article  Google Scholar 

  17. J. Jethmalani, H. Sunkara, W. Ford, S. Willoughby, B. Ackerson, Langmuir 13, 2633 (1997)

    Article  Google Scholar 

  18. G. Heinrich, M. Kluppel, T. Vilgis, Curr. Opin. Solid State Mater. Sci. 6, 195 (2002)

    Article  Google Scholar 

  19. E. Guth, O. Gold, Phys. Rev. 53, 322 (1938)

    Google Scholar 

  20. J. Berriot, F. Martin, H. Montes, L. Monnerie, P. Sotta, Polymer 44, 1437 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Papon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montes, H., Chaussée, T., Papon, A. et al. Particles in model filled rubber: Dispersion and mechanical properties. Eur. Phys. J. E 31, 263–268 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Elastic Modulus
  • Silica Particle
  • Strain Amplitude
  • Strain Softening
  • Small Angle Neutron Scattering