Droplets sliding on fibres

Abstract

We present the results of a combined experimental and theoretical investigation of oil droplets sliding on fibres. First, both the axisymmetric shape and the motion of a droplet on a vertical fibre are described. The motion is shown to result from a balance between the droplet weight and the viscous stresses. On a long-term range, the droplet loses some mass through coating the fibre, which decreases its velocity. In a second time, we rationalize the behaviour of a droplet that encounters a junction between vertical and horizontal fibres. Depending on its size, the droplet may cross the junction or remain blocked. The transition is well described by an ordinary differential equation equivalent to a damped harmonic oscillator truncated to the neighbourhood of the horizontal fibre. This simple system is the basic element for more complex fiber networks that would be useful in microfluidic applications involving droplets.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S.N. Reznik, W. Salalha, A.L. Yarin, E. Zussman, J. Fluid Mech. 574, 179 (2007)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  2. 2

    P. Contal, J. Simao, D. Thomas, T. Frising, S. Callé, J.C. Appert-Collin, D. Bémer, Aerosol Sci. 35, 263 (2004)

    Article  Google Scholar 

  3. 3

    A.L. Yarin, G.G. Chase, W. Liu, S.V.Doiphode, D.H. Reneker, AIChE J. 52, 217 (2006)

    Article  Google Scholar 

  4. 4

    J. Plateau, Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires (Gauthier-Villars, Paris, 1873)

  5. 5

    I.L. Kliakhandler, S.H. Davis, S.G. Bankoff, J. Fluid Mech. 429, 381 (2001)

    MATH  Article  ADS  Google Scholar 

  6. 6

    R.V. Craster, O.K. Matar, J. Fluid Mech. 553, 85 (2006)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  7. 7

    C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné, Phys. Rev. Lett. 98, 244502 (2007)

    Article  ADS  Google Scholar 

  8. 8

    Lord Rayleigh, Proc. R. Soc. London 29, 71 (1879)

    Article  Google Scholar 

  9. 9

    A.L. Yarin, A. Oron, Ph. Rosenau, Phys. Fluids A 5, 91 (1993)

    MATH  Article  ADS  Google Scholar 

  10. 10

    B.J. Carroll, J. Colloid Interface Sci. 57, 488 (1976)

    Article  Google Scholar 

  11. 11

    G. McHale, M.I. Newton, Colloids Surf. A: Physicochem. Eng. Aspects 206, 79 (2002)

    Article  Google Scholar 

  12. 12

    A. Kumar, S. Hartland, J. Colloid Interface Sci. 124, 67 (1988)

    Article  Google Scholar 

  13. 13

    A.L. Yarin, W. Liu, D.H. Reneker, J. Appl. Phys. 91, 4751 (2002)

    Article  ADS  Google Scholar 

  14. 14

    S. Dawar, H. Li, J. Dobson, G.G. Chase, Drying Technol. 24, 1283 (2006)

    Article  Google Scholar 

  15. 15

    E. Lorenceau, D. Quéré, J. Fluid Mech. 510, 29 (2004)

    MATH  Article  ADS  Google Scholar 

  16. 16

    N. LeGrand, A. Daerr, L. Limat, J. Fluid Mech. 541, 293 (2005)

    Article  ADS  Google Scholar 

  17. 17

    S.N. Reznik, A.L. Yarin, Phys. Fluids 14, 118 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. 18

    J. Bico, D. Quéré, J. Fluid Mech. 467, 101 (2002)

    MATH  Article  ADS  Google Scholar 

  19. 19

    E. Lorenceau, C. Clanet, D. Quéré, J. Colloid Interface Sci. 279, 192 (2004)

    Article  Google Scholar 

  20. 20

    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  ADS  Google Scholar 

  21. 21

    T. Gilet, D. Terwagne, N. Vandewalle, Appl. Phys. Lett. 95, 014106 (2009)

    Article  ADS  Google Scholar 

  22. 22

    L.D. Landau, B. Levich, Acta Physicochim. USSR 17, 42 (1942)

    Google Scholar 

  23. 23

    D. Quéré, Annu. Rev. Fluid Mech. 31, 347 (1999)

    Article  ADS  Google Scholar 

  24. 24

    P. Aussillous, D. Quéré, Phys. Fluids 12, 2367 (2000)

    Article  ADS  Google Scholar 

  25. 25

    D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2004)

    Article  ADS  Google Scholar 

  26. 26

    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  27. 27

    T. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Gilet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gilet, T., Terwagne, D. & Vandewalle, N. Droplets sliding on fibres. Eur. Phys. J. E 31, 253–262 (2010). https://doi.org/10.1140/epje/i2010-10563-9

Download citation

Keywords

  • Large Droplet
  • Bond Number
  • Droplet Velocity
  • Droplet Shape
  • Ohnesorge Number