The European Physical Journal E

, Volume 31, Issue 1, pp 95–104 | Cite as

Self-organization in systems of treadmilling filaments

Regular Article


The cytoskeleton is an important substructure of living cells, playing essential roles in cell division, cell locomotion, and the internal organization of subcellular components. Physically, the cytoskeleton is an active polar gel, that is, a system of polar filamentous polymers, which is intrinsically out of thermodynamic equilibrium. Active processes are notably involved in filament growth and can lead to net filament assembly at one end and disassembly at the other, a phenomenon called treadmilling. Here, we develop a framework for describing collective effects in systems of treadmilling filaments in the presence of agents regulating filament assembly. We find that such systems can self-organize into asters and moving filament blobs. We discuss possible implications of our findings for subcellular processes.


Dynamic Equation Solitary Wave Coarse Graining Nucleator Density Full Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bray, Cell movements: From Molecules to Motility, 2nd edition (Garland, New York, 2001)Google Scholar
  2. 2.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001)Google Scholar
  3. 3.
    T.D. Pollard, G.G. Borisy, Cell 112, 453 (2003)CrossRefGoogle Scholar
  4. 4.
    V.I. Rodionov, G.G. Borisy, Nature 386, 170 (1997)CrossRefADSGoogle Scholar
  5. 5.
    V.I. Rodionov, G.G. Borisy, Science 275, 215 (1997)CrossRefGoogle Scholar
  6. 6.
    M.J. Tyska, M.S. Mooseker, Biophys. J. 82, 1869 (2002)CrossRefADSGoogle Scholar
  7. 7.
    M.E. Schneider, I.A. Belyantseva, R.B. Azevedo, B. Kachar, Nature 418, 837 (2002)CrossRefADSGoogle Scholar
  8. 8.
    F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Phys. Rep. 449, 3 (2007)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    D. Humphrey, C. Duggan, D. Saha, D. Smith, J. Käs, Nature 416, 413 (2002)CrossRefADSGoogle Scholar
  10. 10.
    F.J. N\'e, Nature 389, 305 (1997)CrossRefADSGoogle Scholar
  11. 11.
    T. Surrey, F. N\'e, Science 292, 1167 (2001)CrossRefADSGoogle Scholar
  12. 12.
    F. Backouche, L. Haviv, D. Groswasser, A. Bernheim-Groswasser, Phys. Biol. 3, 264 (2006)CrossRefADSGoogle Scholar
  13. 13.
    J. Plastino, C. Sykes, Curr. Opin. Cell Biol. 17, 62 (2005)CrossRefGoogle Scholar
  14. 14.
    D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007)CrossRefADSGoogle Scholar
  15. 15.
    H.Y. Lee, M. Kardar, Phys. Rev. E 64, 056113 (2001)CrossRefADSGoogle Scholar
  16. 16.
    K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004)CrossRefADSGoogle Scholar
  17. 17.
    A. Zumdieck, M. Cosentino Lagomarsino, C. Tanase, K. Kruse, B. Mulder, M. Dogterom, F. Jülicher, Phys. Rev. Lett. 95, 258103 (2005)CrossRefADSGoogle Scholar
  18. 18.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995)CrossRefADSGoogle Scholar
  19. 19.
    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)CrossRefADSGoogle Scholar
  20. 20.
    K. Sekimoto, H. Nakazawa, in Current Topics in Physics, edited by Y.M. Choe, J.B. Hong, C.N. Chang (World scientific, Singapore, 1998), p. 394, physics/0004044Google Scholar
  21. 21.
    K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)CrossRefADSGoogle Scholar
  22. 22.
    T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 90, 138102 (2003)CrossRefADSGoogle Scholar
  23. 23.
    I.S. Aranson, L.S. Tsimring, Phys. Rev. E 71, 050901 (2005)CrossRefADSGoogle Scholar
  24. 24.
    V. Malikov, A. Kashina, V. Rodionov, Mol. Biol. Cell 15, 2742 (2004)CrossRefGoogle Scholar
  25. 25.
    I.V. Maly, G.G. Borisy, Trends Cell Biol. 12, 462 (2002)CrossRefGoogle Scholar
  26. 26.
    E.N. Cytrynbaum, V. Rodionov, A. Mogilner, J. Cell Sci. 117, 1381 (2004)CrossRefGoogle Scholar
  27. 27.
    K. Doubrovinski, K. Kruse, Phys. Rev. Lett. 99, 228104 (2007)CrossRefADSGoogle Scholar
  28. 28.
    F. Oosawa, S. Asakura, Thermodynamics of the Polymerization of Protein (Academic Press, New York, 1975)Google Scholar
  29. 29.
    M. Dogterom, S. Leibler, Phys. Rev. Lett. 70, 1347 (1993)CrossRefADSGoogle Scholar
  30. 30.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., 1965)Google Scholar
  31. 31.
    K. Doubrovinski, K. Kruse, EPL 83, 18003 (2008)CrossRefADSGoogle Scholar
  32. 32.
    K. Doubrovinski, dissertation, Saarland University (2008)Google Scholar
  33. 33.
    I. Vorobjev, V. Malikov, V. Rodionov, Proc. Natl. Acad. Sci. U.S.A. 98, 10160 (2001)CrossRefADSGoogle Scholar
  34. 34.
    S. Ramaswamy, J. Toner, J. Prost, Phys. Rev. Lett. 84, 3494 (2000)CrossRefADSGoogle Scholar
  35. 35.
    K. Kruse, S. Camalet, F. Jülicher, Phys. Rev. Lett. 87, 138101 (2001)CrossRefADSGoogle Scholar
  36. 36.
    R. Shlomovitz, N.S. Gov, Phys. Rev. Lett. 98, 168103 (2007)CrossRefADSGoogle Scholar
  37. 37.
    J. Prost, C. Barbetta, J.-F. Joanny, Biophys. J. 93, 1124 (2007)CrossRefADSGoogle Scholar
  38. 38.
    F. Chamaraux, S. Fache, F. Bruckert, B. Fourcade, Phys. Rev. Lett. 94, 158102 (2005)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretische PhysikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations