Skip to main content

Criticality in a non-equilibrium, driven system: Charged colloidal rods (fd-viruses) in electric fields


Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.

This is a preview of subscription content, access via your institution.


  1. E.V. Ivashkevich, A.M. Povolotsky, A. Vespignani, S. Zapperi, Phys. Rev. E 60, 1239 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  2. C. Godrèche, J.M. Luck, J. Phys.: Condens. Matter 14, 1589 (2002).

    Article  ADS  Google Scholar 

  3. L. Környei, M. Pleimling, F. Iglói, arXiv:0710.2829vl [cond-mat.stat-mech] 15 oct. (2007).

  4. M. Henkel, G.M. Schütz, J. Phys. A: Math. Gen. 37, 591 (2004).

    MATH  Article  ADS  Google Scholar 

  5. V.K. Akkineni, U.C. Täuber, Phys. Rev. E 69, 036113 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Goldenfeld, L.P. Kadanoff, Science 284, 87 (1999).

    Article  ADS  Google Scholar 

  7. H. Hinrichsen, Adv. Phys. 49, 815 (2000).

    Article  ADS  Google Scholar 

  8. G. Odor, Rev. Mod. Phys. 76, 663 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Lubeck, Int. J. Mod. Phys. B 18, 3977 (2004).

    Article  ADS  Google Scholar 

  10. K. Kang, J.K.G. Dhont, EPL 84, 14005 (2008).

    Article  ADS  Google Scholar 

  11. Z. Dogic, S. Fraden, Curr. Opin. Colloid Interface Sci. 11, 47 (2006).

    Article  Google Scholar 

  12. E. Grelet, S. Fraden, Phys. Rev. Lett. 90, 198302 (2003).

    Article  ADS  Google Scholar 

  13. J. Ray, G.S. Manning, Langmuir 10, 2450 (1994).

    Article  Google Scholar 

  14. J. Ray, G.S. Manning, Macromolecules 33, 2901 (2000).

    Article  ADS  Google Scholar 

  15. D. Saintillan, E. Darve, E.S.G. Shaqfeh, J. Fluid Mech. 563, 223 (2006).

    MATH  Article  MathSciNet  ADS  Google Scholar 

  16. J. Sambrook, E.F. Fritsch, T.Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1989).

    Google Scholar 

  17. K. Zimmermann, J. Hagedorn, C.C. Heuck, M. Hinrichsen, J. Ludwig, J. Biol. Chem. 261, 1653 (1986).

    Google Scholar 

  18. K. Kang, A. Wilk, A. Patkowski, J.K.G. Dhont, J. Chem. Phys. 126, 214501 (2007).

    Article  ADS  Google Scholar 

  19. K. Kang, J.K.G. Dhont, to be published in Soft Matter.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to K. Kang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kang, K., Dhont, J.K.G. Criticality in a non-equilibrium, driven system: Charged colloidal rods (fd-viruses) in electric fields. Eur. Phys. J. E 30, 333 (2009).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • 64.60.-i General studies of phase transitions
  • 82.70.Dd Colloids
  • 87.50.-a Effects of electromagnetic and acoustic fields on biological systems