Skip to main content

Thermoelectric effect on charged colloids in the Hückel limit

Abstract

We study the thermophoretic coefficient DT of a charged colloid. The non-uniform electrolyte is characterized in terms of densities and diffusion currents of mobile ions. The hydrodynamic treatment in the vicinity of a solute particle relies on the Hückel approximation, which is valid for particles smaller than the Debye length, a\( \lambda\) . To leading order in the parameter a/\( \lambda\) , we find that the coefficient DT consists of two contributions, a dielectrophoretic term proportional to the permittivity derivative d\( \varepsilon\)/dT , and a Seebeck term, i.e., the macroscopic electric field induced by the thermal gradient in the electrolyte solution. Depending on the particle valency, these terms may take opposite signs, and their temperature dependence may result in a change of sign of thermophoresis, as observed in several recent experiments.

This is a preview of subscription content, access via your institution.

References

  1. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Google Scholar 

  2. J.L. Viovy, Rev. Mod. Phys. 72, 813 (2000).

    Google Scholar 

  3. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).

  4. J.L. Anderson, D.C. Prieve, Langmuir 7, 403 (1991).

  5. W. Köhler, S. Wiegand (Editors), Thermal Nonequilibrium Phenomena in Fluid Mixtures (Springer, 2001).

  6. R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).

    Google Scholar 

  7. R. Piazza, A. Parola, J. Phys. Condens. Matter 15, 153102 (2008).

  8. J. Rauch, W. Köhler, Macromolecules 38, 3571 (2005).

  9. R. Kita, P. Polyakov, S. Wiegand, Macromolecules 40, 1638 (2007).

  10. A. Leahy-Dios, J. Chem. Phys. 122, 234502 (2005).

    Google Scholar 

  11. P.-A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007).

    Google Scholar 

  12. G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008).

    Google Scholar 

  13. S. Iacopini, R. Piazza, Europhys. Lett. 63, 247 (2003).

    Google Scholar 

  14. S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005).

  15. S.A. Putnam, Langmuir 23, 9221 (2007).

  16. S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006).

    Google Scholar 

  17. M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008).

    Google Scholar 

  18. S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006).

    Google Scholar 

  19. H. Ning, J.K.G. Dhont, S. Wiegand, Langmuir 24, 2426 (2008).

    Google Scholar 

  20. A. Würger, Phys. Rev. Lett. 101, 138302 (2008).

    Google Scholar 

  21. S.R. de Groot, P. Mazur, Non-equlibrium Thermodynamics (North Holland Publishing, Amsterdam, 1962).

  22. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Dekker, 1997).

  23. D. Vigolo, G. Brambilla, R. Piazza, Phys. Rev. E 75, 040401 (2007).

    Google Scholar 

  24. B.V. Derjaguin, N.V. Churaev, V.M. Muller, Surface Forces (Plenum Press, New York, 1987).

  25. E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981).

  26. J.C. Giddings, P.M. Shinudu, S.N. Semenov, J. Colloid Interface Sci. 176, 454 (1995).

    Google Scholar 

  27. K.I. Morozov, JETP 88, 944 (1999).

  28. A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004).

    Google Scholar 

  29. S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008).

    Google Scholar 

  30. A. Würger, Phys. Rev. Lett. 98, 138301 (2007).

    Google Scholar 

  31. S.N. Rasuli, R. Golestanian, Phys. Rev. Lett. 101, 138301 (2008).

    Google Scholar 

  32. E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003).

    Google Scholar 

  33. S. Fayolle, Phys. Rev. Lett. 95, 208301 (2005).

    Google Scholar 

  34. J.K.G. Dhont, Langmuir 23, 1674 (2007).

  35. J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008).

    Google Scholar 

  36. E.D. Eastman, J. Am. Chem. Soc. 50, 283

  37. G. Guthrie, J. Chem. Phys. 17, 310 (1949).

    Google Scholar 

  38. E. Helfand, J.G. Kirkwood, J. Chem. Phys. 32, 857 (1960).

    Google Scholar 

  39. J.N. Agar, J. Phys. Chem. 93, 2082 (1989).

  40. J.A. Stratton, Electromagnetic Theory (Mc Graw-Hill, New York, 1941).

  41. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Elsevier, 1983).

  42. V.N. Sokolov, J. Solution Chem. 35, 1621 (2006).

    Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Elsevier, 1987).

  44. S. Kim, S.J. Karilla, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann Boston, 1991).

  45. L. Bocquet, E. Trizac, M. Aubouy, J. Chem. Phys. 117, 8138 (2002).

    Google Scholar 

  46. L.G. Longsworth, J. Phys. Chem. 61, 1557 (1957).

    Google Scholar 

  47. P.N. Snowdon, J.C.R. Turner, Trans. Faraday Soc. 56, 1409 (1960).

    Google Scholar 

  48. D.R. Caldwell, J. Phys. Chem. 77, 2004 (1973).

  49. D.R. Caldwell, S.A. Eide, Deep Sea Res. 28A, 1605 (1981).

  50. F.S. Gaeta, J. Phys. Chem. 26, 2967 (1982).

    Google Scholar 

  51. H. Yow, J. Lin, J. Solution Chem. 12, 487 (1983).

    Google Scholar 

  52. H. Brenner, Phys. Rev. E 74, 036306 (2006).

    Google Scholar 

  53. R.C. Weast (Editor), Handbook of Chemistry and Physics, 55th edition (CRC Press, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morthomas, J., Würger, A. Thermoelectric effect on charged colloids in the Hückel limit. Eur. Phys. J. E 27, 425–434 (2008). https://doi.org/10.1140/epje/i2008-10410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10410-8

PACS