The European Physical Journal E

, Volume 24, Issue 2, pp 157–166 | Cite as

Does the electric Lehmann effect exist in cholesteric liquid crystals?

Regular Article

Abstract.

Experiments have shown that cholesteric droplets or cholesteric fingers may be put into motion by the action of an electric field. The former rotate whereas the latter drift perpendicularly to their axes. In all cases, the texture moves without visible material transport. The electric Lehmann effect was initially used to interpret these observations but, recently, alternative explanations were found, based on electrohydrodynamics. Another experiment in this area was that of Padmini and Madhusudana (Liq. Cryst. 14, 497 (1993)). Performed in 1993 with a compensated cholesteric liquid crystal under fixed planar boundary conditions, it was also explained in terms of electric Lehmann effect. We conducted the same experiment and extended it to a π -twisted planar geometry. Although our experimental results agree with those of Padmini and Madhusudana, we demonstrate that they are incompatible with an electric Lehmann effect. By contrast, an explanation based on flexoelectricity allows us to interpret the whole data set obtained in both geometries. The consequence is that there is at the moment no clear experimental evidence of the electric Lehmann effect.

PACS.

61.30.Gd Orientational order of liquid crystals; electric and magnetic field effects on order 77.65.-j Piezoelectricity and electromechanical effects 42.70.Df Liquid crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Lehmann, Ann. Phys. (Leipzig) 2, 649 (1900).ADSGoogle Scholar
  2. 2.
    O. Lehmann, Flüssige Kristalle und ihr Scheinbares Leben (Verlag von Leopold Voss, Leipzig, 1921).Google Scholar
  3. 3.
    F.M. Leslie, Proc. R. Soc. London, Ser. A 307, 359 (1968). Google Scholar
  4. 4.
    P.-G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).Google Scholar
  5. 5.
    N.V. Madhusudana, R. Pratibha, Mol. Cryst. Liq. Cryst. Lett. 5, 43 (1987).Google Scholar
  6. 6.
    N.V. Madhusudana, R. Pratibha, Liq. Cryst. 5, 1827 (1989).CrossRefGoogle Scholar
  7. 7.
    O.S. Tarasov, Stuctural Transitions and Dynamics of Liquid Crystals under Flows and Electric Fields, PhD Thesis, University of Bayreuth (2003).Google Scholar
  8. 8.
    P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, CRC Press, Boca Raton, 2005).Google Scholar
  9. 9.
    P. Oswald, J. Baudry, S. Pirkl, Phys. Rep. 60, 67 (2000).CrossRefADSGoogle Scholar
  10. 10.
    J.M. Gilli, M. Kamayé, Liq. Cryst. 11, 791 (1992)CrossRefGoogle Scholar
  11. 11.
    M. Mitov, P. Sixou, J. Phys. II 2, 1659 (1992)CrossRefGoogle Scholar
  12. 12.
    P. Ribiere, P. Oswald, S. Pirkl, J. Phys. II 4, 127 (1994).CrossRefGoogle Scholar
  13. 13.
    J.M. Gilli, L. Gil, Liq. Cryst. 17, 1 (1994).CrossRefGoogle Scholar
  14. 14.
    L. Gil, S. Thiberge, J. Phys. II 7, 1499 (1997).CrossRefMathSciNetGoogle Scholar
  15. 15.
    L. Gil, J.M. Gilli, Phys. Rev. Lett. 80, 5742 (1998).CrossRefADSGoogle Scholar
  16. 16.
    J. Baudry, S. Pirkl, P. Oswald, Phys. Rev. E 60, 2990 (1999).CrossRefADSGoogle Scholar
  17. 17.
    O.S. Tarasov, A.P. Krekhov, L. Kramer, Phys. Rev. E 60, 031708 (2003).CrossRefADSGoogle Scholar
  18. 18.
    H.P. Padmini, N.V. Madhusudana, Liq. Cryst. 14, 497 (1993).CrossRefGoogle Scholar
  19. 19.
    H. Pleiner, H.R. Brand, Mol. Cryst. Liq. Cryst. Lett. 5, 61 (1987).Google Scholar
  20. 20.
    H. Pleiner, H.R. Brand, Mol. Cryst. Liq. Cryst. Lett. 5, 183 (1988).Google Scholar
  21. 21.
    N. Éber, I. Jánossy, Mol. Cryst. Liq. Cryst. Lett. 72, 233 (1982)CrossRefGoogle Scholar
  22. 22.
    A. Dequidt, P. Oswald, Europhys. Lett. 80, 26001 (2007).CrossRefADSGoogle Scholar
  23. 23.
    A. Dequidt, A. Zywocinski, P. Oswald, Lehman effect in a compensated cholesteric liquid crystal: experimental evidence with fixed and gliding boundary conditions, submitted to Eur. Phys. J. E.Google Scholar
  24. 24.
    H.R. Brand, H. Pleiner, Mol. Cryst. Liq. Cryst. 292, 141 (1997).CrossRefGoogle Scholar
  25. 25.
    L.M. Blinov, Electro-optical and Magneto-optical Properties of Liquid Crystals (John Wiley & Sons, Chichester, 1983).Google Scholar
  26. 26.
    Note that we have used here the following definition for the flexoelectric polarization: $\mathbf{P}_{\ab{flexo}}=e_1\mathbf{n} \vec{\nabla}\cdot\mathbf{n}+e_3\mathbf{n}\times(\vec{\nabla}\times\mathbf{n})$.Google Scholar
  27. 27.
    R.S. Akopyan, B.Ya. Zel'dovich, Sov. Phys. JETP 60, 953 (1984).Google Scholar
  28. 28.
    More precisely, we estimate that $|\nu_C|<8\times10^{-10}$kg V^-1 s^-2 by taking into account the experimental errors in the measurements of $I_1$ as a function of the voltage at $T_c$.Google Scholar
  29. 29.
    More rigorously, the proportionality coefficient $\nu_0$ must be very small if it exists, less (in absolute value) than $2\times10^{-15}$kg m V^-1 s^-2 at 55.6^C and less than $1\times10^{-15}$kg m V^-1 s^-2 at 59.6^C. These upper limits were deduced from the analysis of the noise in the measurements of $I_1$ below the onset of instability.Google Scholar
  30. 30.
    P.R. Maheswara Murthy, V.A. Raghunathan, N.V. Madhusudana, Liq. Cryst. 14, 483 (1993).CrossRefGoogle Scholar
  31. 31.
    More precisely, we can affirm that $|\nu|<6\times10^{-15}$kg m V^-1 s^-2 at 52.6^C. Again this upper limit was deduced from the analysis of the noise in the measurement of $I_1$ below the onset of instability.Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2007

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueÉcole Normale Supérieure de Lyon, UMR 5672 of the CNRSLyonFrance

Personalised recommendations