The European Physical Journal E

, Volume 22, Issue 3, pp 241–248 | Cite as

The influence of grain shape, friction and cohesion on granular compaction dynamics

  • N. VandewalleEmail author
  • G. Lumay
  • O. Gerasimov
  • F. Ludewig
Topical Issue on Dygram 2006


This article is a review of our recent and new experimental works on granular compaction. The effects of various microscopic parameters on the compaction dynamics are addressed, in particular the influence of the grain shape, the friction and the cohesion between the grains. Two dimensionnal and three dimensionnal systems are analysed. And the role of dimensionality will be emphasized. Theoretical and numerical investigations provide additional informations about that phenomenon. Indeed numerical models permit us to study the influence of some parameters not easily accessible experimentally. Our results show that the above mentioned parameters have a deep impact on the compaction dynamics. Anisotropic grains lead to two different compaction regimes separated by a “burst" of the packing fraction. Friction is observed to modify how the grains are arranged in the pile. This is confirmed by numerical simulations. Cohesive forces between particles inhibit compaction and lead to extremely low values of the packing fraction.


45.70.-n Granular systems 45.70.Cc Static sandpiles; granular compaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.B. Knight, C.G. Fandrich, Chun Ning Lau, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 51, 3957 (1995) CrossRefADSGoogle Scholar
  2. E.R. Nowak, J.B. Knight, E. Ben-Naim, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 1971 (1998) CrossRefADSGoogle Scholar
  3. P. Richard, M. Nicodemi, R. Delannay, P. Ribière, D. Bideau, Nature Materials 4, 121 (2005) CrossRefADSGoogle Scholar
  4. P. Philippe, D. Bideau, Europhys. Lett. 60, 677 (2002) CrossRefADSGoogle Scholar
  5. P. Ribière, P. Richard, D. Bideau, R. Delannay, Eur. Phys. J. E 16, 415 (2005) CrossRefGoogle Scholar
  6. F. Ludewig, N. Vandewalle, Eur. Phys. J. E 18, 367 (2005) CrossRefGoogle Scholar
  7. E. Caglioti, V. Loreto, H.J. Herrmann, M. Nicodemi, Phys. Rev. Lett. 79, 1575 (1997) CrossRefADSGoogle Scholar
  8. F. Ludewig, S. Dorbolo, N. Vandewalle, Phys. Rev. E 70, 051304 (2004) CrossRefADSGoogle Scholar
  9. G. Lumay, N. Vandewalle, C. Bodson, L. Delattre, O. Gerasimov, Appl. Phys. Lett. 89, 093505 (2006) CrossRefGoogle Scholar
  10. T. Boutreux, P.G. de Gennes, Physica A 244, 59 (1997) CrossRefADSGoogle Scholar
  11. G. Lumay, N. Vandewalle, Phys. Rev. Lett. 95, 028002 (2005) CrossRefADSGoogle Scholar
  12. G. Lumay, N. Vandewalle, Phys. Rev. E 74, 021301 (2006); N. Vandewalle, S. Galam, M. Kramer, Eur. Phys. J. B 14, 407 (2000) CrossRefADSGoogle Scholar
  13. G. Lumay, N. Vandewalle, Phys. Rev. E 70, 051314 (2004) CrossRefADSGoogle Scholar
  14. F.X. Villarruel, B.E. Lauderdale, D.M. Mueth, H.M. Jaeger, Phys. Rev. E 61, 6914 (2000) CrossRefADSGoogle Scholar
  15. A.W. Alexander, B. Chaudhuri, A. Faqih, F.J. Muzzio, C. Davies, M.S. Tomassonea, Powder Technology 164, 13 (2006) CrossRefGoogle Scholar
  16. P. Philippe, D. Bideau, Phys. Rev. E 63, 051304 (2001) CrossRefADSGoogle Scholar
  17. S. Remond, Physica A 329, 127 (2003) CrossRefADSGoogle Scholar
  18. F. Radjai, L. Brendel, S. Roux, Phys. Rev. E 54, 861 (1996) CrossRefADSGoogle Scholar
  19. A.V. Tkachenko, T.A. Witten, Phys. Rev. E 60, 687 (1999) CrossRefADSGoogle Scholar
  20. L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine, Phys. Rev. E 65, 031304 (2002) CrossRefADSMathSciNetGoogle Scholar
  21. C. Fusco, A. Fasolino, P. Gallo, A. Petri, M. Rovere, Phys. Rev. E 66, 031301 (2002) CrossRefADSGoogle Scholar
  22. M. Renouf, D. Bonamy, F. Dubois, P. Alart, Phys. Fluids 17, 103303 (2005) CrossRefGoogle Scholar
  23. M. Renouf, F. Dubois, P. Alart, J. Comp. Appl. Math. 168, 395 (2004) CrossRefADSMathSciNetGoogle Scholar
  24. Y. Bertho, C. Becco, N. Vandewalle, Phys. Rev. E 73, 056309 (2006) CrossRefADSGoogle Scholar
  25. P. Philippe, Étude théorique et expérimentale de la densification des milieux granulaires, Ph.D. thesis, Université de Rennes 1, (2002) Google Scholar
  26. M. Abramovitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • N. Vandewalle
    • 1
    Email author
  • G. Lumay
    • 1
  • O. Gerasimov
    • 1
    • 2
  • F. Ludewig
    • 1
  1. 1.GRASP, Physics DepartmentUniversity of LiègeLiègeBelgium
  2. 2.Department of General and Theoretical PhysicsOdessa State University of environmentOdessaUkraine

Personalised recommendations