The European Physical Journal E

, Volume 16, Issue 1, pp 17–28 | Cite as

Structural investigations of DNA-polycation complexes

Regular Articles


The internal structure of DNA-polycation complexes is investigated by synchrotron small-angle X-ray scattering (SAXS). Hexagonal packing of DNA is observed for DNA complexed with poly-L-lysine (PL), poly-L-arginine (PA), spermine (Sp), and linear and branched polyethyleneimine (lPEI and bPEI, respectively). Variations in the internal spacings and degree of long-range ordering are dependent on both polycation type and concentration of added salt. With increasing concentration of monovalent salt, a discontinuous phase transition is observed from compact to loose bundles and finally to an isotropic network phase. This salt-induced melting transition was found to be universal for all polyplexes studied and is in quantitative agreement with a simple free energy model based solely on electrostatic and entropic contributions. Using the osmotic stress method, bulk modulus (K) is measured for PL-DNA and PA-DNA polyplexes at various salt concentrations. With increasing osmotic force, we show that the salt-induced melting transition is shifted and compression in the loose bundle regime is in qualitative agreement with our model.


Osmotic Stress Bulk Modulus Spermine Internal Spacing Polyethyleneimine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. Dautzenberg, Macromol. Symp. 162, 1 (2000)Google Scholar
  2. A.S. Michaels, R.G. Miekka, J. Phys. Chem. 65, 1765 (1961)Google Scholar
  3. M. Tsianou, A.-L. Kjoniksen, K. Thuresson, B. Nystrom, Macromolecules 32, 2974 (1999)Google Scholar
  4. K. Wagner, D. Harries, S. May, V. Kahl, J.O. Rädler, A. Ben-Shaul, Langmuir 16, 303 (2000)Google Scholar
  5. D.P. Mascotti, T.M. Lohman, Proc. Natl. Acad. Sci. USA 87, 3142 (1990)ADSGoogle Scholar
  6. H. Diamant, D. Andelman, Phys. Rev. E 61, 6740 (2000)ADSGoogle Scholar
  7. M. Castelnovo, J.-F. Joanny, Eur. Phys. J. E 6, 377 (2001)Google Scholar
  8. K.-K. Kunze, R.R. Netz, Europhys. Lett. 58, 299 (2002)ADSGoogle Scholar
  9. S.Y. Park, R.F. Bruinsma, W.M. Gelbart, Europhys. Lett. 46, 454 (1999)Google Scholar
  10. M. Skepö, P. Linse, Macromolecules 36, 508 (2003)Google Scholar
  11. V.A. Bloomfield, Biopolymers 44, 269 (1998)Google Scholar
  12. L. Huang, M. Hung, E. Wagner, Nonviral Vectors for Gene Therapy (Academic Press, San Diego, 1999) Google Scholar
  13. P.L. Felgner, G. Rhodes, Nature 349, 351 (1991)ADSGoogle Scholar
  14. B. Pitard, N. Oudrhiri, J. Vigneron, M. Hauchecorne, O. Aguerre, R. Toury, M. Airiau, R. Ramasawmy, D. Scherman, J. Crouzet, J. Lehn, P. Lehn, Proc. Natl. Acad. Sci. USA 96, 2621 (1999)ADSGoogle Scholar
  15. N. Zhu, D. Liggitt, Y. Liu, R. Debs, Science 261, 209 (1993)ADSGoogle Scholar
  16. R.W. Wilson, V.A. Bloomfield, Biochemistry-US 18, 2192 (1979)Google Scholar
  17. E. Raspaud, M.O. de la Cruz, J.L. Sikorav, F. Livolant, Biophys. J. 74, 381 (1998)Google Scholar
  18. J. Pelta, D. Durand, J. Doucet, F. Livolant, Biophys. J. 71, 48 (1996)Google Scholar
  19. C. Plank, M.X. Tang, A.R. Wolfe, F.C. Szoka, Human Gene Therapy 10, 319 (1999)Google Scholar
  20. E. Wagner, M. Zenke, M. Cotten, H. Beur, M.L. Birnstiel, Proc. Natl. Acad. Sci. USA 87, 3410 (1990)ADSGoogle Scholar
  21. U.K. Laemmli, Proc. Natl. Acad. Sci. USA 72, 4288 (1975)Google Scholar
  22. C.W. Pouton, P. Lucas, B.J. Thomas, A.N. Uduehi, D.A. Milroy, S.H. Moss, J. Controlled Release 53, 289 (1998)Google Scholar
  23. J.-S. Remy, A. Kichler, V. Mordvinov, F. Schuber, J.P. Behr, Proc. Natl. Acad. Sci. USA 92, 1744 (1995)ADSGoogle Scholar
  24. J. Haensler, F.C. Szoka, Bioconjugate Chem. 4, 372 (1993)Google Scholar
  25. O. Boussif, F. Lezoualch, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneiz, J.P. Behr, Proc. Natl. Acad. Sci. USA 92, 7297 (1995)ADSGoogle Scholar
  26. T.K. Bronich, H.K. Nguyen, A. Eisenberg, A.V. Kabanov, J. Am. Chem. Soc. 122, 8339 (2000)Google Scholar
  27. J.-S. Remy, B. Abdallah, M.A. Zanta, O. Boussif, J.P. Behr, B. Demeneix, Advanced Drug Delivery Rev. 30, 85 (1998)Google Scholar
  28. I. Koltover, T. Salditt, J.O. Rädler, C.R. Safinya, Science 281, 78 (1998)CrossRefPubMedGoogle Scholar
  29. F. Artzner, R. Zantl, G. Rapp, J.O. Rädler, Phys. Rev. Lett. 81, 5015 (1998)Google Scholar
  30. J.O. Rädler, I. Koltover, T. Salditt, C.R. Safinya, Science 275, 810 (1997) CrossRefPubMedGoogle Scholar
  31. T. Salditt, I. Koltover, J.O. Rädler, C.R. Safinya, Phys. Rev. Lett. 79, 2582 (1997)ADSGoogle Scholar
  32. R. Zantl, F. Artzner, G. Rapp, J.O. Rädler, Europhys. Lett. 45, 90 (1999)Google Scholar
  33. H.M. Evans, A. Ahmad, K. Ewert, T. Pfohl, A. Martin-Herranz, R.F. Bruinsma, C.R. Safinya, Phys. Rev. Lett. 91, Art. No. 075501 (2003) Google Scholar
  34. M. Suwalsky, W. Traub, U. Shmueli, J.A. Subirana, J. Mol. Biol. 42, 363 (1969)Google Scholar
  35. M. Suwalsky, W. Traub, Biopolymers 11, 2223 (1972)Google Scholar
  36. F. Azorin, J. Vives, J.L. Campos, A. Jordan, J. Lloveras, L. Puigjaner, J.A. Subirana, R. Mayer, A. Brack, J. Mol. Biol. 185, 371 (1985)Google Scholar
  37. A.G. Cherstvy, A.A. Kornyshev, S. Leikin, J. Phys. Chem. B 108, 6508 (2004)Google Scholar
  38. H.M. Harreis, C.N. Likos, H. Löwen, Biophys. J. 84, 3607 (2003)Google Scholar
  39. V. Lorman, R. Podgornik, B. Zeks, Phys. Rev. Lett. 87, art. no. 218101 (2001) Google Scholar
  40. D.P. Mascotti, T.M. Lohman, Biochemistry 36, 7272 (1997)Google Scholar
  41. T. Odijk, Biophys. Chem. 46, 69 (1993)Google Scholar
  42. R.R. Netz, H. Orland, Eur. Phys. J. E 11, 301 (2003)CrossRefGoogle Scholar
  43. T. Odijk, Macromolecules 16, 1340 (1983)Google Scholar
  44. R.R. Netz, J.-F. Joanny, Macromolecules 32, 9013 (1999)CrossRefGoogle Scholar
  45. S.L. Snyder, P.Z. Sobcinski, Anal. Biochem. 64, 284 (1975)Google Scholar
  46. W. Zauner, M. Ogris, E. Wagner, Advanced Drug Delivery Rev. 30, 97 (1998)Google Scholar
  47. S. Boeckle, K. von Gersdorff, S. van der Piepen, C. Culmsee, E. Wagner, M. Ogris, J. Gene Med. 6, 1102 (2004) Google Scholar
  48. D.C. Rau, V.A. Parsegian, Biophys. J. 61, 246 (1992)CrossRefGoogle Scholar
  49. R. Podgornik, H.H. Strey, D.C. Rau, V.A. Parsegian, Biophys. Chem. 57, 111 (1995)Google Scholar
  50. R.P. Rand, (2002) Google Scholar
  51. M.J. Leonard, H.H. Strey, Macromolecules 36, 9549 (2003)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Ludwig-Maximilians-UniversitätMunichGermany

Personalised recommendations