Skip to main content
Log in

Microwave-controlled two-dimensional atom localization in a five-level Rydberg atom-laser interaction system and its application as a phase-diffraction cross-grating

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present a microwave mediated two-dimensional (2D) atom localization scheme involving Rydberg states. The localization of Rydberg atoms is realized in terms of the absorption of the optical probe field that connects the ground state with a four-level diamond-like closed-loop formed by two pump fields (producing mutually orthogonal standing-waves) and two microwave fields (which are running waves)-driven atomic transitions. It is observed that the probe laser is absorbed by the cold atoms in 2D plane which forms parallel line, wave-like line, elliptical- and lattice-like patterns. These patterns signify atom localization in 2D space. We have explored the influence of probe detuning, microwave field strength ratios and relative phase between them, van der Waals and dipole–dipole interactions between the atoms in the Rydberg states on the atom localization. The pump strength-to-microwave strength ratios corresponding to the two atomic transition branches, configuring the diamond-like closed-loop is found to affect the localization pattern for different relative phases. Interestingly, the strength ratios of the pump and microwave fields follow a balancing condition when discrete lattice-like patterns appear. This balancing condition is similar to the Wheatstone bridge balance condition for the electrical circuit. Besides, a possible application of this five-level system as a phase-diffraction cross-grating is presented by examining the variation of first-order diffraction intensity w.r.t. the probe detuning and the two microwave field strength ratios.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Datasets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. K.D. Stokes, C. Schnurr, J.R. Gardner, M. Marable, G.R. Welch, J.E. Thomas, Precision position measurement of moving atoms using optical fields. Phys. Rev. Lett. 67(15), 1997 (1991). https://doi.org/10.1103/PhysRevLett.67.1997

  2. W.D. Phillips, Nobel lecture: laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721 (1998). https://doi.org/10.1103/RevModPhys.70.721

  3. K.S. Johnson, J.H. Thywissen, N.H. Dekker, K.K. Berggren, A.P. Chu, R. Younkin, M. Prentiss, Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280(5369), 1583–1586 (1998). https://doi.org/10.1126/science.280.5369.1583

  4. A.V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, M.D. Lukin, Coherent quantum optical control with subwavelength resolution. Phys. Rev. Lett. 100(9), 093005 (2008). https://doi.org/10.1103/PhysRevLett.100.093005

  5. J. Evers, S. Qamar, M.S. Zubairy, Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements. Phys. Rev. A 75(5), 053809 (2007). https://doi.org/10.1103/PhysRevA.75.053809

  6. K.T. Kapale, S. Qamar, M.S. Zubairy, Spectroscopic measurement of an atomic wave function. Phys. Rev. A 67(2), 023805 (2003). https://doi.org/10.1103/PhysRevA.67.023805

  7. A. Raheli, H.R. Hamedi, M. Sahrai, Atom localization in 2D for five-level atomic schemes in X-configuration. Laser Phys. 25(9), 095202 (2015). https://doi.org/10.1088/1054-660X/25/9/095202

  8. R.G. Wan, T.Y. Zhang, Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission. Opt. Express 19(25), 25823–25832 (2011). https://doi.org/10.1364/OE.19.025823

  9. V. Ivanov, Y. Rozhdestvensky, 2D atom localization in a four-level tripod system in laser fields. arXiv:1209.3133 (2012)

  10. F. Zheng, Q. Ge, X. Wang, High-precision three-dimensional atom localization in a three-level pump-probe atomic system. Can. J. Phys. 96(8), 864–870 (2018). https://doi.org/10.1139/cjp-2017-0745

  11. Y. Qi, F. Zhou, T. Huang, Y. Niu, S. Gong, Three-dimensional atom localization in a five-level M-type atomic system. J. Mod. Opt. 59(12), 1092–1099 (2012). https://doi.org/10.1080/09500340.2012.697203

  12. E. Paspalakis, P.L. Knight, Localizing an atom via quantum interference. Phys. Rev. A 63(6), 065802 (2001). https://doi.org/10.1103/PhysRevA.63.065802

  13. E. Paspalakis, A.F. Terzis, P.L. Knight, Quantum interference induced sub-wavelength atomic localization. J. Mod. Opt. 52(12), 1685–1694 (2005). https://doi.org/10.1080/09500340500072489

  14. Z. Wang, X. Wu, L. Lu, B. Yu, High-efficiency one-dimensional atom localization via two parallel standing-wave fields. Laser Phys. 24(10), 105501 (2014). https://doi.org/10.1088/1054-660X/24/10/105501

  15. M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A 72(1), 013820 (2005). https://doi.org/10.1103/PhysRevA.72.013820

  16. J. Xu, X. Hu, Sub-half-wavelength localization of an atom via trichromatic phase control. J. Phys. B At. Mol. Opt. Phys. 40(7), 1451 (2007). https://doi.org/10.1088/0953-4075/40/7/013

  17. C. Liu, S. Gong, D. Cheng, X. Fan, Z. Xu, Atom localization via interference of dark resonances. Phys. Rev. A 73(2), 025801 (2006). https://doi.org/10.1103/PhysRevA.73.025801

  18. A.M. Herkommer, W.P. Schleich, M.S. Zubairy, Autler–Townes microscopy on a single atom. J. Mod. Opt. 44(11–12), 2507–2513 (1997). https://doi.org/10.1080/09500349708231897

  19. C. Ding, J. Li, Z. Zhan, X. Yang, Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A 83(6), 063834 (2011). https://doi.org/10.1103/PhysRevA.83.063834

  20. S. Qamar, S.Y. Zhu, M.S. Zubairy, Atom localization via resonance fluorescence. Phys. Rev. A 61(6), 063806 (2000). https://doi.org/10.1103/PhysRevA.61.063806

  21. S. Qamar, A. Mehmood, S. Qamar, Subwavelength atom localization via coherent manipulation of the Raman gain process. Phys. Rev. A 79(3), 033848 (2009). https://doi.org/10.1103/PhysRevA.79.033848

  22. J.C. Wu, Z.D. Liu, J. Zheng, High-precision two-dimensional atom localization via probe absorption in an M-scheme atomic system. Chin. Phys. B 22(4), 044203 (2013). https://doi.org/10.1088/1674-1056/22/4/044203

  23. X. Jiang, J. Li, X. Sun, Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system. Opt. Express 25(25), 31678–31687 (2017). https://doi.org/10.1364/OE.25.031678

  24. J.C. Wu, B.Q. Ai, Two-dimensional sub-wavelength atom localization in an electromagnetically induced transparency atomic system. EPL (Europhys. Lett.) 107(1), 14002 (2014). https://doi.org/10.1209/0295-5075/107/14002

  25. Z. Wang, D. Cao, B. Yu, Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system. Appl. Opt. 55(13), 3582–3588 (2016). https://doi.org/10.1364/AO.55.003582

  26. Z. Wang, B. Yu, Efficient three-dimensional atom localization via probe absorption. JOSA B 32(7), 1281–1286 (2015). https://doi.org/10.1364/JOSAB.32.001281

  27. M.S. Ali, V. Naik, A. Ray, A. Chakrabarti, 2D sub-half-wavelength atom localization in a three-level V-type atomic system. arXiv:1807.08930 (2018)

  28. C. Ding, J. Li, X. Yang, D. Zhang, H. Xiong, Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys. Rev. A 84(4), 043840 (2011). https://doi.org/10.1103/PhysRevA.84.043840

  29. J. Wu, B. Wu, J. Mao, Efficient atom localization via probe absorption in an inverted-Y atomic system. J. Mod. Opt. 65(10), 1219–1225 (2018). https://doi.org/10.1080/09500340.2018.1429683

  30. Z. Zhu, W.X. Yang, A.X. Chen, S. Liu, R.K. Lee, Two-dimensional atom localization via phase-sensitive absorption-gain spectra in five-level hyper inverted-Y atomic systems. JOSA B 32(6), 1070–1077 (2015). https://doi.org/10.1364/JOSAB.32.001070

  31. H.R. Hamedi, M.R. Mehmannavaz, Phase control of three-dimensional atom localization in a four-level atomic system in \(\Lambda \) configuration. JOSA B 33(1), 41–45 (2016). https://doi.org/10.1364/JOSAB.33.000041

  32. Y. Mao, J. Wu, High-precision three-dimensional atom localization in a microwave-driven atomic system. JOSA B 34(6), 1070–1074 (2017). https://doi.org/10.1364/JOSAB.34.001070

  33. B.K. Dutta, P. Panchadhyayee, I. Bayal, N. Das, P. Kumar Mahapatra, Optical absorption microscopy of localized atoms at microwave domain: two-dimensional localization based on the projection of three-dimensional localization. Sci. Rep. 10(1), 1–14 (2020). https://doi.org/10.1038/s41598-019-57141-z

  34. Z. Wang, J. Chen, B. Yu, High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system. Opt. Express 25(4), 3358–3372 (2017). https://doi.org/10.1364/OE.25.003358

  35. N. Singh, A. Wasan, High-precision two-and three-dimensional atom localization via spatial dependent probe absorption in a closed-loop M-type atomic system. JOSA B 35(6), 1318–1327 (2018). https://doi.org/10.1364/JOSAB.35.001318

  36. Y.L. Chuang, R.K. Lee, S. Qamar, Sub-microwave wavelength localization of Rydberg superatoms. JOSA B 35(10), 2588–2593 (2018). https://doi.org/10.1364/JOSAB.35.002588

  37. S.K. Dubey, H.S. Rawat, 2-dimensional sub-atomic localization of Rb Rydberg atoms for SI traceable E-field metrology, in 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), pp. 1–4. IEEE (2019). https://doi.org/10.23919/URSIAP-RASC.2019.8738541

  38. J. Liu, H. Wang, L. Wang, L. Wang, M. Liu, A. Li, Three-dimensional atom localization with high-precision and high-resolution via a microwave field in an atomic system. Laser Phys. 31(10), 105203 (2021). https://doi.org/10.1088/1555-6611/ac295f

  39. Z.I. Dar, A. Kaur, N. Singh, P. Kaur, Microwave enhanced precision in 2D and 3D atom localization at nonzero temperatures. Laser Phys. Lett. 19(9), 095209 (2022). https://doi.org/10.1088/1612-202X/ac85e7

  40. M.N. Kobrak, S.A. Rice, Selective photochemistry via adiabatic passage: an extension of stimulated Raman adiabatic passage for degenerate final states. Phys. Rev. A 57(4), 2885 (1998). https://doi.org/10.1103/PhysRevA.57.2885

  41. H.R. Hamedi, G. Juzeliūnas, Phase-sensitive atom localization for closed-loop quantum systems. Phys. Rev. A 94(1), 013842 (2016). https://doi.org/10.1103/PhysRevA.94.013842

  42. M. Mahmoudi, M. Sahrai, M.A. Allahyari, Amplitude and phase control of absorption and dispersion in a Kobrak-Rice 5-level quantum system. Prog. Electromagn. Res. B 24, 333–350 (2010). https://doi.org/10.2528/PIERB10061405

  43. A. Das, J.K. Saha, M.M. Hossain, Microwave-controlled coherence effects and the generation of four-wave mixing signal in a five-level atomic system involving Rydberg states. Eur. Phys. J. D 77(7), 146 (2023). https://doi.org/10.1140/epjd/s10053-023-00724-3

  44. S.J. Buckle, S.M. Barnett, P.L. Knight, M.A. Lauder, D.T. Pegg, Atomic interferometers. Opt. Acta Int. J. Opt. 33(9), 1129–1140 (1986). https://doi.org/10.1080/713822082

  45. P. Meystre, M. Sargent, Quantum mechanical background, in Elements of Quantum Optics, pp. 47–80 (1999). https://doi.org/10.1007/978-3-662-03877-2_3

  46. S.C. Rand, Lectures on Light: Nonlinear and Quantum Optics Using the Density Matrix (Oxford University Press, Oxford, 2016). https://doi.org/10.1080/00107514.2017.1403485

  47. H.J. Metcalf, P. Van der Straten, Laser Cooling and Trapping of Atoms (Springer, Berlin, 1999). https://doi.org/10.1364/JOSAB.20.000887

  48. D.A. Steck, Rubidium 85 and 87 d line data, vol. 2(2), p. 12 (2009). http://steck.us/alkalidata

  49. D.B. Branden, T. Juhasz, T. Mahlokozera, C. Vesa, R.O. Wilson, M. Zheng, A. Kortyna, D.A. Tate, Radiative lifetime measurements of rubidium Rydberg states. J. Phys. B At. Mol. Opt. Phys. 43(1), 015002 (2009). https://doi.org/10.1088/0953-4075/43/1/015002

  50. H. Jingshan, Electromagnetically Induced Transparency and Microwave-to-Optical Conversion Using Rydberg Atoms. PhD thesis, Centre for Quantum Technologies, National University of Singapore (2017). http://scholarbank.nus.edu.sg/handle/10635/136360

  51. L. Wang, F. Zhou, P. Hu, Y. Niu, S. Gong, Two-dimensional electromagnetically induced cross-grating in a four-level tripod-type atomic system. J. Phys. B At. Mol. Opt. Phys. 47(22), 225501 (2014). https://doi.org/10.1088/0953-4075/47/22/225501

Download references

Acknowledgements

AD thanks West Bengal Minorities Development and Finance Corporation (WBMDFC) for providing Swami Vivekananda Merit-cum-Means Scholarship (SVMCMS) through Aliah University. MH and JKS acknowledges financial support from Department of Higher Education, Science, Technology and Bio-Technology (DHESTBT), Govt. of West Bengal, India, under grant number 249(Sanc.)/ST/P/S &T/16 G-26/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta K. Saha.

Appendices

Appendix 1

The explicit forms of the OBEs are given as,

$$\begin{aligned} {\dot{\rho }}_{11}= & {} i\Omega _{Pr}(\rho _{12}-\rho _{21})+\gamma _{1}\rho _{22}+\gamma _{2}\rho _{55}\nonumber \\ {\dot{\rho }}_{22}= & {} i\Omega _{Pr}(\rho _{21}-\rho _{12})-i\Omega _{P1}(\rho _{32}-\rho _{23})\nonumber \\{} & {} \quad -i\Omega _{P2}(\rho _{42}-\rho _{24})-\gamma _{1}\rho _{22}+\gamma _{3}\rho _{33}+\gamma _{4}\rho _{44}\nonumber \\ {\dot{\rho }}_{33}= & {} i\Omega _{P1}(\rho _{32}-\rho _{23})-i\Omega _{L1}e^{i\phi }\rho _{53}\nonumber \\{} & {} \quad +i\Omega _{L1}e^{-i\phi }\rho _{35}-\gamma _{3}\rho _{33}+\gamma _{5}\rho _{55}\nonumber \\ {\dot{\rho }}_{44}= & {} i\Omega _{P2}(\rho _{42}-\rho _{24})-i\Omega _{L2}(\rho _{54}-\rho _{45})-\gamma _{4}\rho _{44}+\gamma _{6}\rho _{55}\nonumber \\ {\dot{\rho }}_{55}= & {} i\Omega _{L1}e^{i\phi }\rho _{53}-i\Omega _{L1}e^{-i\phi }\rho _{35}\nonumber \\{} & {} \quad -\,i\Omega _{L2}(\rho _{45}-\rho _{54})-(\gamma _{2}+\gamma _{5}+\gamma _{6})\rho _{55}\nonumber \\ {\dot{\rho }}_{12}= & {} (i\delta -\frac{\gamma _{1}}{2})\rho _{12}+i\Omega _{Pr}(\rho _{11}-\rho _{22})\nonumber \\{} & {} \quad +\,i\Omega _{P1}\rho _{13}+i\Omega _{P2}\rho _{14}\nonumber \\ {\dot{\rho }}_{13}= & {} \left[ i(\delta +\delta _{P1})-\frac{\gamma _{3}}{2}\right] \rho _{13}-i\Omega _{Pr}\rho _{23}\nonumber \\{} & {} \quad +\,i\Omega _{P1}\rho _{12}+i\Omega _{L1}e^{-i\phi }\rho _{15}\nonumber \\ {\dot{\rho }}_{14}= & {} \left[ i(\delta +\delta _{P2})-\frac{\gamma _{4}}{2}\right] \rho _{14}-i\Omega _{Pr}\rho _{24}\nonumber \\{} & {} \quad +\,i\Omega _{P2}\rho _{12}+i\Omega _{L2}\rho _{15}\nonumber \\ {\dot{\rho }}_{15}= & {} \left[ i(\delta +\delta _{P2}+\delta _{L})-\frac{\gamma _{2}+\Gamma _{56}}{2}\right] \rho _{15}-i\Omega _{Pr}\rho _{25}\nonumber \\{} & {} \quad +\,i\Omega _{L1}e^{i\phi }\rho _{13}+i\Omega _{L2}\rho _{14}\nonumber \\ {\dot{\rho }}_{23}= & {} \left[ i\delta _{P1}-\frac{\Gamma _{13}}{2}\right] \rho _{23}-i\Omega _{Pr}\rho _{13}+i\Omega _{P1}(\rho _{22}-\rho _{33})\nonumber \\{} & {} \quad -\,i\Omega _{P2}\rho _{43}+i\Omega _{L1}e^{-i\phi }\rho _{25}\nonumber \\ {\dot{\rho }}_{24}= & {} \left[ i\delta _{P2}-\frac{\Gamma _{14}}{2}\right] \rho _{24}-i\Omega _{Pr}\rho _{14}\nonumber \\{} & {} \quad +\,i\Omega _{P2}(\rho _{22}-\rho _{44})-i\Omega _{P1}\rho _{34}+i\Omega _{L2}\rho _{25}\nonumber \\ {\dot{\rho }}_{25}= & {} \left[ i(\delta _{P2}+\delta _{L})-\frac{\Gamma _{12}+\Gamma _{56}}{2}\right] \rho _{25}-i\Omega _{Pr}\rho _{15}\nonumber \\{} & {} \quad -\,i\Omega _{P1}\rho _{35}-i\Omega _{P2}\rho _{45}+i\Omega _{L1}e^{i\phi }\rho _{23}+i\Omega _{L2}\rho _{24}\nonumber \\ {\dot{\rho }}_{34}= & {} \left[ i(\delta _{P1}-\delta _{P2})-\frac{\Gamma _{34}}{2}\right] \rho _{34}-i\Omega _{P1}\rho _{24}+i\Omega _{P2}\rho _{32}\nonumber \\{} & {} \quad -\,i\Omega _{L1}e^{i\phi }\rho _{54}+i\Omega _{L2}\rho _{35}\nonumber \\ {\dot{\rho }}_{35}= & {} \left[ i(\delta _{P2}-\delta _{P1}+\delta _{L})-\frac{\Gamma _{23}+\Gamma _{56}}{2}\right] \rho _{35}\nonumber \\{} & {} \quad -\,i\Omega _{P1}\rho _{25}+i\Omega _{L1}e^{i\phi }(\rho _{33}-\rho _{55})+i\Omega _{L2}\rho _{34}\nonumber \\ {\dot{\rho }}_{45}= & {} \left[ i\delta _{L}-\frac{\Gamma _{24}+\Gamma _{56}}{2}\right] \rho _{45}-i\Omega _{P2}\rho _{25}\nonumber \\{} & {} \quad +\,i\Omega _{L2}(\rho _{44}-\rho _{55})+i\Omega _{L1}e^{i\phi }\rho _{43} \end{aligned}$$
(A.1)

Here, \(\Gamma _{ij}=\gamma _{i}+\gamma _{j}\) with \(i, j = 1\) to 6.

Appendix 2

The dressed energy eigenvalues (\(E_1\), \(E_2\), \(E_3\), \(E_4\)) at \(\delta _{P1}=\delta _{P2}=\delta _{L}=0\) are

$$\begin{aligned} E_{1}, E_{2}, E_{3}, E_{4}=\hbar \delta \pm \hbar \sqrt{\pm \frac{\sqrt{(W1)^{2}+8\Omega _{P1}\Omega _{P2}\Omega _{L1}\Omega _{L2} \cos \phi +(W_{3})^{2}+2W_{2}W_{4}}+W_{1}+W_{3}}{2}} \end{aligned}$$
(A.2)

where \(W_{1}=\Omega _{P1}^{2}+\Omega _{P2}^{2}\), \(W_{2}=\Omega _{P2}^{2}-\Omega _{P1}^{2}\), \(W_{3}=\Omega _{L1}^{2}+\Omega _{L2}^{2}\) and \(W_{4}=\Omega _{L2}^{2}-\Omega _{L1}^{2}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Mabud Hossain, M. & Saha, J.K. Microwave-controlled two-dimensional atom localization in a five-level Rydberg atom-laser interaction system and its application as a phase-diffraction cross-grating. Eur. Phys. J. D 78, 48 (2024). https://doi.org/10.1140/epjd/s10053-024-00842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00842-6

Navigation