Skip to main content
Log in

Quantum information-theoretical analysis on the two-photon transitions in hydrogen isoelectronic ions under plasma confinement

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Quantum information-theoretical measure in terms of Shannon and Fisher entropy in conjugate position and momentum spaces provides important information about the localization/delocalization patterns of the inter-atomic charge density under arbitrary confining environments. In this article, we have attempted to employ such measures to the ground, excited, and the virtual states arising out of two-photon transitions (\(1s\rightarrow nl\); \(n=2-4\), \(l=0,2\)) of weakly coupled classical plasma embedded H iso-electronic ions (nuclear charge, \(Z = 2 - 5\)). The wavefunction for the said states is essentially a linear combination of the Slater-type orbitals, the coefficients of which are generated from a fourth-order time-dependent perturbation theory within the variational framework. A complementary nature has been noted in the Shannon and Fisher measures versus the plasma screening parameter plot in the conjugate spaces. A novel scaling law has been proposed to replicate the variation of the Shannon and Fisher entropy w.r.t. Z for the virtual as well as real 2p states of free and plasma confined ions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

“This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the data generated for this work is displayed in the article.]

References

  1. S.E. Massen, Application of information entropy to nuclei. Phys. Rev. C 67, 014314 (2003). https://doi.org/10.1103/PhysRevC.67.014314

    Article  ADS  Google Scholar 

  2. N.L. Guevara, R.P. Sagar, R.O. Esquivel, Shannon-information entropy sum as a correlation measure in atomic systems. Phys. Rev. A 67, 012507 (2003). https://doi.org/10.1103/PhysRevA.67.012507

    Article  ADS  Google Scholar 

  3. N.L. Guevara, R.P. Sagar, R.O. Esquivel, Local correlation measures in atomic systems. The Journal of Chemical Physics 122, 084101 (2005). https://doi.org/10.1063/1.1848092

    Article  ADS  Google Scholar 

  4. P. Lévay, S. Nagy, J. Pipek, Elementary formula for entanglement entropies of fermionic systems. Phys. Rev. A 72, 022302 (2005). https://doi.org/10.1103/PhysRevA.72.022302

    Article  ADS  MathSciNet  Google Scholar 

  5. T. M. Cover and J. A. Thomas, Elements of information theory. ( John Wiley & Sons, Inc., Hoboken, New Jersey, ISBN: 978-0-471-24195-9, 2006)

  6. I. Bialynicki-Birula, Formulation of the uncertainty relations in terms of the rényi entropies. Phys. Rev. A 74, 052101 (2006). https://doi.org/10.1103/PhysRevA.74.052101

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Grassi, A relationship between atomic correlation energy and tsallis entropy. International Journal of Quantum Chemistry 108, 774 (2008). https://doi.org/10.1002/qua.21549

    Article  ADS  Google Scholar 

  8. M.G.A. Paris, Quantum estimation for quantum technology. International Journal of Quantum Information 07, 125 (2009). https://doi.org/10.1142/S0219749909004839

    Article  Google Scholar 

  9. L. D. Site, On the scaling properties of the correlation term of the electron kinetic functional and its relation to the shannon measure, EPL (Europhysics Letters) 86, 40004 (2009a) https://doi.org/10.1209/0295-5075/86/40004

  10. L. D. Site, On the scaling properties of the correlation term of the electron kinetic functional and its relation to the shannon measure, EPL (Europhysics Letters) 88, 19901 (2009b) https://doi.org/10.1209/0295-5075/88/19901

  11. L.M. Ghiringhelli, I.P. Hamilton, and L. Delle Site, Interacting electrons, spin statistics, and information theory, The Journal of Chemical Physics 132, 014106 (2010). https://doi.org/10.1063/1.3280953

    Article  Google Scholar 

  12. L. Ghiringhelli, L. Delle Site, R. Mosna, and I. Hamilton, Information-theoretic approach to kinetic-energy functionals: the nearly uniform electron gas, J Math Chem 48, 78 (2010) https://doi.org/10.1007/s10910-010-9690-6

  13. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information ( Cambridge University Press, 2010)

  14. A. Grassi, A relationship between atomic correlation energy of neutral atoms and generalized entropy. International Journal of Quantum Chemistry 111, 2390 (2011). https://doi.org/10.1002/qua.22541

    Article  Google Scholar 

  15. J. McMinis, N.M. Tubman, Rényi entropy of the interacting fermi liquid. Phys. Rev. B 87, 081108 (2013). https://doi.org/10.1103/PhysRevB.87.081108

    Article  ADS  Google Scholar 

  16. R. Islam, R. Ma, P. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Measuring entanglement entropy in a quantum many-body system., Nature Phys 528, 77 (2015) https://doi.org/10.1038/nature15750

  17. A. Nagy, Fisher and shannon information in orbital-free density functional theory. International Journal of Quantum Chemistry 115, 1392 (2015). https://doi.org/10.1038/nature15750

    Article  Google Scholar 

  18. M. Alipour, Making a happy match between orbital-free density functional theory and information energy density. Chemical Physics Letters 635, 210 (2015)

    Article  ADS  Google Scholar 

  19. A.E. Rastegin, Uncertainty and certainty relations for successive projective measurements of a qubit in terms of tsallis’ entropies. Communications in Theoretical Physics 63, 687 (2015). https://doi.org/10.1088/0253-6102/63/6/687

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Delle Site, Shannon entropy and many-electron correlations: Theoretical concepts, numerical results, and collins conjecture, International Journal of Quantum Chemistry 115, 1396 (2015) https://doi.org/10.1002/qua.24823

  21. N. Flores-Gallegos, Informational energy as a measure of electron correlation. Chemical Physics Letters 666, 62 (2016). https://doi.org/10.1016/j.cplett.2016.10.075

    Article  ADS  Google Scholar 

  22. A.M. Kaufman, M.E. Tai, A. Lukin, M. Rispoli, R. Schittko, P.M. Preiss, M. Greiner, Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794 (2016). https://doi.org/10.1126/science.aaf6725

    Article  ADS  Google Scholar 

  23. C. Herdman, P. Roy, R. Melko, A.D. Maestro, Entanglement area law in superfluid \(^4\)He. Nature Phys 13, 556 (2017). https://doi.org/10.1038/nphys4075

  24. A. Nahum, J. Ruhman, D.A. Huse, Dynamics of entanglement and transport in one-dimensional systems with quenched randomness. Phys. Rev. B 98, 035118 (2018). https://doi.org/10.1103/PhysRevB.98.035118

    Article  ADS  Google Scholar 

  25. H. Barghathi, C.M. Herdman, A. Del Maestro, Rényi generalization of the accessible entanglement entropy. Phys. Rev. Lett. 121, 150501 (2018). https://doi.org/10.1103/PhysRevLett.121.150501

    Article  ADS  MathSciNet  Google Scholar 

  26. C.E. Shannon, A mathematical theory of communication. The Bell System Technical Journal 27, 379 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  Google Scholar 

  27. R. A. Fisher, Statistical methods for research workers editted by S. Kotz and N. L. Johnson (Springer, New York, 1992) pp. 66–70

  28. S.R. Gadre, Information entropy and thomas-fermi theory. Phys. Rev. A 30, 620 (1984). https://doi.org/10.1103/PhysRevA.30.620

    Article  ADS  MathSciNet  Google Scholar 

  29. K.D. Sen, Characteristic features of shannon information entropy of confined atoms. The Journal of Chemical Physics 123, 074110 (2005). https://doi.org/10.1063/1.2008212

    Article  ADS  Google Scholar 

  30. R.P. Sagar, H.G. Laguna, N.L. Guevara, Conditional entropies and position–momentum correlations in atomic systems. Molecular Physics 107, 2071 (2009). https://doi.org/10.1080/00268970903153675

    Article  ADS  Google Scholar 

  31. C.-H. Lin, Y.K. Ho, Shannon information entropy in position space for two-electron atomic systems. Chemical Physics Letters 633, 261 (2015). https://doi.org/10.1016/j.cplett.2015.05.029

    Article  ADS  Google Scholar 

  32. J. P. Restrepo Cuartas and J. L. Sanz-Vicario, Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium, Phys. Rev. A 91, 052301 (2015) https://doi.org/10.1103/PhysRevA.91.052301

  33. J.-H. Ou and Y. K. Ho, Shannon information entropy in position space for the ground and singly excited states of helium with finite confinements, Atoms 5, 15 (2017)

  34. J.-H. Ou and Y. K. Ho, Shannon, rényi, tsallis entropies and onicescu information energy for low-lying singly excited states of helium, Atoms 7, 70 (2019)

  35. J.-H. Ou, Y.K. Ho, Benchmark calculations of rényi, tsallis entropies, and onicescu information energy for ground state helium using correlated hylleraas wave functions. International Journal of Quantum Chemistry 119, e25928 (2019). https://doi.org/10.1002/qua.25928

    Article  Google Scholar 

  36. L.R. Zan, L.G. Jiao, J. Ma, Y.K. Ho, Information-theoretic measures of hydrogen-like ions in weakly coupled debye plasmas. Physics of Plasmas 24, 122101 (2017). https://doi.org/10.1063/1.5004501

    Article  ADS  Google Scholar 

  37. M.-J. Lee, Y.-D. Jung, Astronomical data of atomic shannon entropies in astrophysical lorentzian plasmas. The Astrophysical Journal 871, 111 (2019). https://doi.org/10.3847/1538-4357/aaf73c

    Article  ADS  Google Scholar 

  38. M.-J. Lee, Y.-D. Jung, Characteristics of shannon’s information entropy of atomic states in strongly coupled plasma. Entropy 22, 881 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Debye and E. Hückel, De la theorie des electrolytes. i. abaissement du point de congelation et phenomenes associes, Physikalische Zeitschrift I 24, 185 (1923)

  40. A. I. Akhiezer, I. A. Akhiezer, R. V. Polovin, A. G. Sitenko, and K. N. Stepanov, Plasma electrodynamics ( Oxford, Pergamon Press, 1975)

  41. M. Göppert-Mayer, Über elementarakte mit zwei quantensprüngen. Annalen der Physik 401, 273 (1931). https://doi.org/10.1002/andp.19314010303

    Article  ADS  Google Scholar 

  42. G. Breit, E. Teller, Metastability of Hydrogen and Helium Levels. Astrophys. J. 91, 215 (1940). https://doi.org/10.1086/144158

    Article  ADS  Google Scholar 

  43. J. Shapiro, G. Breit, Metastability of \(2s\) states of hydrogenic atoms. Phys. Rev. 113, 179 (1959). https://doi.org/10.1103/PhysRev.113.179

    Article  ADS  Google Scholar 

  44. S. Klarsfeld, Two-photon ionization of atomic hydrogen in the ground state, Lettere al Nuovo Cimento (1969-1970) 3, 395 (1970) https://doi.org/10.1007/BF02819081

  45. G.W.F. Drake, G.A. Victor, A. Dalgarno, Two-photon decay of the singlet and triplet metastable states of helium-like ions. Phys. Rev. 180, 25 (1969). https://doi.org/10.1103/PhysRev.180.25

    Article  ADS  Google Scholar 

  46. G.W.F. Drake, Spontaneous two-photon decay rates in hydrogenlike and heliumlike ions. Phys. Rev. A 34, 2871 (1986). https://doi.org/10.1103/PhysRevA.34.2871

    Article  ADS  Google Scholar 

  47. S.P. Goldman, G.W.F. Drake, Relativistic two-photon decay rates of \(2{s}_{\frac{1}{2}}\) hydrogenic ions. Phys. Rev. A 24, 183 (1981). https://doi.org/10.1103/PhysRevA.24.183

    Article  ADS  Google Scholar 

  48. R. Marrus, V. San Vicente, P. Charles, J. P. Briand, F. Bosch, D. Liesen, and I. Varga, Relativistic two-photon emission: Lifetime of the \({2}^{1}{S}_{0}\) state of heliumlike \({{{\rm Kr}}}^{34+}\), Phys. Rev. Lett. 56, 1683 (1986) https://doi.org/10.1103/PhysRevLett.56.1683

  49. J.H. Tung, X.M. Salamo, F.T. Chan, Two-photon decay of hydrogenic atoms. Phys. Rev. A 30, 1175 (1984). https://doi.org/10.1103/PhysRevA.30.1175

    Article  ADS  Google Scholar 

  50. A. Costescu, I. Brandus, N. Mezincescu, Simpler formulae for the two-photon transitions in hydrogenic atoms. Journal of Physics B: Atomic and Molecular Physics 18, L11 (1985). https://doi.org/10.1088/0022-3700/18/2/001

    Article  ADS  Google Scholar 

  51. M. Martinis, M. Stojić, Two-Photon Transitions in Hydrogen-Like Atoms. Fizika A 9, 115 (2000)

    ADS  Google Scholar 

  52. A. Dalgarno, D.R. Bates, Two-photon Decay of Singlet Metastable Helium. Monthly Notices of the Royal Astronomical Society 131, 311 (1966). https://doi.org/10.1093/mnras/131.2.311

    Article  ADS  Google Scholar 

  53. V. Jacobs, Two-photon decay rate of the \(2^{1}S_{0}\) metastable state of helium. Phys. Rev. A 4, 939 (1971). https://doi.org/10.1103/PhysRevA.4.939

  54. R. Novick, E. Commins, Hyperfine structure of the metastable state of singly ionized \(^3\)He. Phys. Rev. 103, 1897 (1956). https://doi.org/10.1103/PhysRev.103.1897.2

    Article  ADS  Google Scholar 

  55. R. W. Boyd, Nonlinear optics (Academic press, 2020)

  56. N. Bloembergen, Nonlinear optics: past, present, and future. IEEE Journal of Selected Topics in Quantum Electronics 6, 876 (2000)

    Article  ADS  Google Scholar 

  57. Y.-R. Shen, Principles of nonlinear optics (Wiley-Interscience (NY, USA, New York, 1984)

  58. M. Levenson, Introduction to nonlinear laser spectroscopy (Elsevier, 2012)

  59. X. Hu, Y. Zhang, D. Guzun, M.E. Ware, Y.I. Mazur, C. Lienau, G.J. Salamo, Photoluminescence of inas/gaas quantum dots under direct two-photon excitation. Scientific Reports 10, 10930 (2020). https://doi.org/10.1038/s41598-020-67961-z

    Article  ADS  Google Scholar 

  60. P. Amaro, F. Fratini, L. Safari, J. Machado, M. Guerra, P. Indelicato, J.P. Santos, Relativistic evaluation of the two-photon decay of the metastable \(1{s}^{2}2s2p^{3}{P}_{0}\) state in berylliumlike ions with an effective-potential model. Phys. Rev. A 93, 032502 (2016). https://doi.org/10.1103/PhysRevA.93.032502

    Article  ADS  Google Scholar 

  61. R. Kundliya, V. Prasad, M. Mohan, The two-photon process in an atom using the pseudostate summation technique. Journal of Physics B: Atomic, Molecular and Optical Physics 33, 5263 (2000). https://doi.org/10.1088/0953-4075/33/23/301

    Article  ADS  Google Scholar 

  62. A. Derevianko, W.R. Johnson, Two-photon decay of \(2{}^{1}{S}_{0}\) and \(2{}^{3}{S}_{1}\) states of heliumlike ions. Phys. Rev. A 56, 1288 (1997). https://doi.org/10.1103/PhysRevA.56.1288

    Article  ADS  Google Scholar 

  63. A. Quattropani, F. Bassani, S. Carillo, Two-photon transitions to excited states in atomic hydrogen. Phys. Rev. A 25, 3079 (1982). https://doi.org/10.1103/PhysRevA.25.3079

    Article  ADS  Google Scholar 

  64. B. Zon, N. Manakov, L. Rapoport, Perturbation theory for the multiphoton ionization of atoms. Sov. Phys. JETP 34, 515 (1972)

    ADS  Google Scholar 

  65. S. Paul, Y.K. Ho, Effects of Debye plasmas on two-photon transitions in lithium atoms. Phys. Rev. A 78, 042711 (2008). https://doi.org/10.1103/PhysRevA.78.042711

    Article  ADS  Google Scholar 

  66. S. Paul, Y.K. Ho, Two-photon transitions in hydrogen atoms embedded in weakly coupled plasmas. Physics of Plasmas 15, 073301 (2008). https://doi.org/10.1063/1.2953802

    Article  ADS  Google Scholar 

  67. S. Paul, Y.K. Ho, Combined effect of Debye plasma environment and external electric field on hydrogen atom. Physics of Plasmas 17, 082704 (2010). https://doi.org/10.1063/1.3463708

    Article  ADS  Google Scholar 

  68. S. Lumb, S. Lumb, V. Prasad, Two-photon transitions in confined hydrogenic atoms. Revista Mexicana de Física 64, 42 (2018). https://doi.org/10.31349/revmexfis.64.42

    Article  MathSciNet  Google Scholar 

  69. S. Bhattacharyya, P.K. Mukherjee, B. Fricke, Frequency dependent hyperpolarizability and two photon excitations in hydrogen atom confined under classical plasma environment. Physics Letters A 384, 126115 (2020). https://doi.org/10.1016/j.physleta.2019.126115

    Article  Google Scholar 

  70. S. Bhattacharyya, P.K. Mukherjee, B. Fricke, Nonlinear response properties of atomic hydrogen under quantum plasma environment: A time-dependent variation perturbation study on hyperpolarizability and two-photon excitations. International Journal of Quantum Chemistry 120, e26422 (2020). https://doi.org/10.1002/qua.26422

    Article  Google Scholar 

  71. S.K. Chaudhuri, S. Bhattacharyya, R.K. Chaudhuri, P.K. Mukherjee, Time dependent variation perturbation calculation of two-photon transition probability and hyperfine shift in hydrogen atom under plasma environment. Physics Letters A 402, 127343 (2021). https://doi.org/10.1016/j.physleta.2021.127343

    Article  Google Scholar 

  72. S. Mondal, J.K. Saha, P.K. Mukherjee, B. Fricke, Information theoretic measures on the two-photon transitions of hydrogen atom embedded in weakly coupled plasma environment. Physica Scripta 98, 045411 (2023). https://doi.org/10.1088/1402-4896/acc2f2

    Article  ADS  Google Scholar 

  73. Statistical complexity : applications in electronic structure (Springer, Dordrecht; 2011)

  74. P.-O. Löwdin, P. Mukherjee, Some comments on the time-dependent variation principle. Chemical Physics Letters 14, 1 (1972). https://doi.org/10.1016/0009-2614(72)87127-6

    Article  ADS  MathSciNet  Google Scholar 

  75. C.A. Nicolaides, T. Mercouris, G. Aspromallis, Many-electron, many-photon theory of nonlinear polarizabilities. J. Opt. Soc. Am. B 7, 494 (1990). https://doi.org/10.1364/JOSAB.7.000494

  76. L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Benchmark values of shannon entropy for spherically confined hydrogen atom. International Journal of Quantum Chemistry 117, e25375 (2017). https://doi.org/10.1002/qua.25375

    Article  Google Scholar 

  77. I. Białynicki-Birula, J. Mycielski, Uncertainty relations for information entropy in wave mechanics. Communications in Mathematical Physics 44, 129 (1975). https://doi.org/10.1007/BF01608825

    Article  ADS  MathSciNet  Google Scholar 

  78. E. Romera, P. Sánchez-Moreno, J. Dehesa, The Fisher information of single-particle systems with a central potential. Chemical Physics Letters 414, 468 (2005). https://doi.org/10.1016/j.cplett.2005.08.032

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SM is grateful for the financial help from IISER Kolkata. PKM thanks the Alexander von Humboldt foundation for a fellowship to stay at the University of Kassel and the research group there for their kind hospitality. JKS acknowledges partial financial support from the Science and Engineering Research Board (SERB), Govt. of India under file number CRG/2022/003547.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to P. K. Mukherjee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Chaudhuri, S.K., Saha, J.K. et al. Quantum information-theoretical analysis on the two-photon transitions in hydrogen isoelectronic ions under plasma confinement. Eur. Phys. J. D 78, 61 (2024). https://doi.org/10.1140/epjd/s10053-024-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00840-8

Navigation