Skip to main content
Log in

SO-FDTD simulation on the transmission characteristics of terahertz waves in inhomogeneous magnetized dusty plasma

  • Regular Article - Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The transmission characteristics of terahertz waves in inhomogeneous magnetized dusty plasma are studied by using the shift-operator finite-difference-time-domain (SO-FDTD) method. The Epstein distribution model is employed to simulate the electron density distribution in dusty plasmas. The results given by the SO-FDTD method are in good agreement with those gotten by the Wentzel–Kramers–Brillouin method. Both the left-hand and right-hand circularly polarized (LCP and RCP) waves are taken into account. The transmission characteristics of RCP waves are more complicated than LCP waves. The numerical results show that all the physical parameters, such as the electron density, dust particle density, dust particle radius, effective collision frequency, electron relaxation rate and external magnetic field intensity, and so on, can affect the propagation, absorption and reflection of terahertz waves in dusty plasma. These theoretical results may be useful for alleviating the “blackout” problem and improving electromagnetic waves communication.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. The manuscript has associated data in a data repository.

References

  1. B.W. Bai, X. Li, Y. Liu, Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves. IEEE Trans. Plasma Sci. 42(10), 3365–3372 (2014)

    Article  ADS  Google Scholar 

  2. S. Zhang, W. Zhang, Z. Zong, High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing. IEEE Trans. Antennas Propag. 63(5), 2098–2111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  3. L.J. Guo, L.X. Guo, J.T. Li, Propagation of terahertz electromagnetic waves in a magnetized plasma with inhomogeneous electron density and collision frequency. Phys. Plasmas 24(2), 022108 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Borhanian, M. Shahmansouri, Three dimensional dust-acoustic solitary waves in an electron depleted. Phys. Plasmas 20(1), 013707 (2013)

    Article  ADS  Google Scholar 

  5. A.A. Fridman, L. Boufendi, T. Hbid, Dusty plasma formation: physics and critical phenomena. Theoretical approach. J. Appl. Phys. 79(3), 1303–1314 (1996)

    Article  ADS  Google Scholar 

  6. S. Dap, D. Lacroix, R. Hugon, J. Bougdira, Retrieving particle size and density from extinction measurement in dusty plasma, Monte Carlo inversion and Ray-tracing comparison. J. Quant. Spectrosc. Radiat. Transfer 128, 18–26 (2013)

    Article  ADS  Google Scholar 

  7. L.Q. Li, Y.X. Shi, F. Wang, SO-FDTD method of analyzing the reflection and transmission coefficient of weakly ionized dusty plasma layer. Acta Phys. Sin. 61(12), 125201–125201 (2012)

    Article  Google Scholar 

  8. U. Konopka, L. Ratke, H.M. Thomas, Central collisions of charged dust particles in a plasma. Phys. Rev. Lett. 79(7), 1269–1272 (1997)

    Article  ADS  Google Scholar 

  9. R.L. Stenzel, J.M. Urrutia, A new method for removing the blackout problem on reentry vehicles. J. Appl. Phys. 113(10), 103303 (2013)

    Article  ADS  Google Scholar 

  10. T. Dekorsy, H. Auer, C. Waschke, Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett. 74(5), 738–741 (1995)

    Article  ADS  Google Scholar 

  11. M. Hangyo, M. Tani, T. Nagashima, Terahertz time-domain spectroscopy of solids: a review. Int. J. Infrared Millim. Waves 26(12), 1661–1690 (2005)

    Article  ADS  Google Scholar 

  12. R. Piesiewicz, C. Jansen, D. Mittleman, Scattering analysis for the modeling of THz communication systems. IEEE Trans. Antennas Propag. 55(11), 3002–3009 (2007)

    Article  ADS  Google Scholar 

  13. P.K. Shukla, L. Stenflo, A.A. Mamun, Acceleration of dust grains by means of electromagnetic cyclotron waves. J. Geophys. Res. Space Phys. 107(A10), SIA 8-1-SIA 8-4 (2002)

    Article  Google Scholar 

  14. Q. Rao, G. Xu, P. Wang, Study of the propagation characteristics of terahertz waves in a collisional and inhomogeneous dusty plasma with a ceramic substrate and oblique angle of incidence. Int. J. Antennas Propag. 2021, 1–9 (2021)

    Article  Google Scholar 

  15. S.P. Jamison, J. Shen, D.R. Jones, Plasma characterization with terahertz time-domain measurements. J. Appl. Phys. 93(7), 4334–4336 (2003)

    Article  ADS  Google Scholar 

  16. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  Google Scholar 

  17. C. Taylor, D.H. Lam, T.H. Shumpert, Electromagnetic pulse scattering in time-varying inhomogeneous media. IEEE Trans. Antennas Propag. 17(5), 585–589 (1969)

    Article  ADS  Google Scholar 

  18. A. Taflove, M.E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microw. Theory Techn. 23(8), 623–630 (1975)

    Article  ADS  Google Scholar 

  19. J.L. Young, A higher order FDTD method for EM propagation in a collisionless cold plasma. IEEE Trans. Antennas Propag. 44(9), 1283–1289 (1996)

    Article  ADS  Google Scholar 

  20. R.J. Luebbers, F. Hunsberger, K.S. Kunz, A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans. Antennas Propag. 39(1), 29–34 (1991)

    Article  ADS  Google Scholar 

  21. D.M. Sullivan, Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propag. 40(10), 1223–1230 (1992)

    Article  ADS  Google Scholar 

  22. S.J. Huang, F. Li, Finite-difference time-domain simulation of electromagnetic propagation in magnetized plasma. Comput. Phys. Commun. 166(1), 45–52 (2005)

    Article  ADS  Google Scholar 

  23. D.F. Kelley, R.J. Luebbers, Piecewise linear recursive convolution for dispersive media using FDTD. IEEE Trans. Antennas Propag. 44(6), 792–797 (1996)

    Article  ADS  Google Scholar 

  24. Q. Chen, M. Katsurai, P.H. Aoyagi, An FDTD formulation for dispersive media using a current density. IEEE Trans. Antennas Propag. 46(11), 1739–1746 (1998)

    Article  ADS  Google Scholar 

  25. Y.J. Kim, K.Y. Jung, Accurate and efficient finite-difference time-domain formulation of dusty plasma. IEEE Trans. Antennas Propag. 69(10), 6600–6606 (2021)

    Article  ADS  Google Scholar 

  26. Z.K. Zhou, X.H. Wan, X.L. Li, SO-FDTD analysis on transmission characteristics of terahertz wave in plasma. Phys. Plasmas 28(7), 072105 (2021)

    Article  ADS  Google Scholar 

  27. C.X. Yuan, Z.X. Zhou, J.W. Zhang, FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab. IEEE Trans. Plasma Sci. 39(7), 1577–1584 (2011)

    Article  ADS  Google Scholar 

  28. D.B. Ge, Y.L. Wu, X.Q. Zhu, Shift operator method applied for dispersive medium in FDTD analysis. Chin. J. Radio Sci. 18(4), 359–363 (2003)

    Google Scholar 

  29. W. Chen, L.X. Yang, Z.X. Huang, Research on the propagation characteristics of THz waves in spatial inhomogeneous and time-varying and weakly ionized dusty plasma. IEEE Trans. Plasma Sci. 47(10), 4745–4752 (2019)

    Article  ADS  Google Scholar 

  30. Y.T. Liu, W. Chen, L.X. Yang, Research on the propagation properties of THz circularly polarized wave in BGK model inhomogeneous dusty plasma. Phys. Plasmas 27(9), 093702 (2020)

    Article  Google Scholar 

  31. J.Z. Duan, C.L. Wang, J.R. Zhang, Influence of charging process and size distribution of dust grain on the electric conductivity of dusty plasma. Phys. Plasmas 19(8), 083703 (2012)

    Article  ADS  Google Scholar 

  32. Q. Deng, C. Chen, W. Chen, Study on the absorption properties of terahertz circularly polarized wave in fpl model fully ionized dusty plasma. IEEE Trans. Plasma Sci. 51(3), 847–852 (2023)

    Article  ADS  Google Scholar 

  33. D.B. Ge, Y.B. Yan, Finite-difference time-domain method for electromagnetic waves (Xidian University Press, Xidian, 2005)

    Google Scholar 

  34. X.H. Wan, Z.K. Zhou, J. Zhang, Propagation characteristics of obliquely incident terahertz waves in high-temperature magnetized Plasma. IEEE Trans. Plasma Sci. 50(2), 241–249 (2022)

    Article  ADS  Google Scholar 

  35. H. Zhou, X. Li, Y. Liu, Effects of nonuniform magnetic fields on the “Magnetic Window’’ in blackout mitigation. IEEE Trans. Plasma Sci. 45(1), 15–23 (2016)

    Article  ADS  Google Scholar 

  36. B. Guo, X. Wang, Power absorption of high-frequency electromagnetic waves in a partially ionized magnetized plasma. Phys. Plasmas 12(8), 084506 (2005)

    Article  ADS  Google Scholar 

  37. H. Wang, Y. Chen, C. Huang, The electromagnetic waves propagation characteristics of inhomogeneous dusty plasma. Optik 196, 163148 (2019)

    Article  ADS  Google Scholar 

  38. L.M. Vasilyak, D.N. Polyakov, V.E. Fortov, Parameters of the positive column of glow discharge with dust particles. High Temp. 49(5), 623–628 (2011)

    Article  Google Scholar 

  39. X.H. Wan, Z.K. Zhou, J. Zhang, Transmission characteristics of terahertz waves in high-temperature inhomogeneous magnetized plasma. Europhys. Lett. 134(2), 24002 (2021)

  40. W. Mao, G. Xu, Study on propagation properties of electromagnetic waves through a magnetized, collisional and inhomogeneous plasma under oblique incidence. AIP Adv. 9(8), 085305 (2019)

  41. L. Li, Z.Y. Li, Z.X. Liu, Effect of dust charge fluctuations on Kelvin–Helmholtz instability in a cold dust plasma. Phys. Plasmas 7(1), 424–427 (2000)

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12065022, 12147213, and 11565021).

Author information

Authors and Affiliations

Authors

Contributions

Y.-X.Z. wrote the manuscript and prepared all figures. Y.-R.S. proposed the physical idea and revised the article. The others analyzed the results. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yan Song or Yu-Ren Shi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

Our contributions meet the ethical requirements of the COPE journal.

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent for publication.

Code availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YX., Su, RM., Ma, JP. et al. SO-FDTD simulation on the transmission characteristics of terahertz waves in inhomogeneous magnetized dusty plasma. Eur. Phys. J. D 78, 32 (2024). https://doi.org/10.1140/epjd/s10053-024-00824-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00824-8

Navigation