Skip to main content
Log in

Coherent spin exchange scattering of low-energy electrons by Ni2+ ions in antiferromagnetic crystal NiO under surface wave resonance: experimental and theoretical results revisited

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this report, we revisit coherent spin exchange scattering experiments with low-energy electrons by Ni2+ ions in antiferromagnetic (AF) crystal NiO. The use of the advanced low-energy electron diffraction (LEED) technique for surface analysis enables more quantitative characterization of surface atoms of Ni2+ ions based on (1) the energy dependence of LEED for “half-order beam” intensity, i.e., the I–V curve, and (2) the temperature dependence at the intensity maximum of 31 eV. In the I–V curve, resonance enhancement is clearly observed, which corresponds to a surface wave resonance (SWR) effect. Under SWR conditions, i.e., the emergence of diffracted beams propagating nearly parallel to the crystal surface, the surface-spin structure properties are investigated through the low-temperature range where the saturation phenomenon can be confirmed. Those energy dependences are also calculated by the relativistic multiple-scattering method, and the temperature dependence is compared with a molecular field model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All our data are available from the corresponding author on reasonable request.].

References

  1. N.F. Mott, Proc. Phys. Soc. A 62, 416 (1949)

    Article  ADS  Google Scholar 

  2. M. Taguchi, M. Matsunami, Y. Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi, S. Shin, Phys. Rev. Lett. 100, 206401 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. P.W. Palmberg, R.E. DeWames, L.A. Vredevoe, Phys. Rev. Lett. 21, 682 (1968)

    Article  CAS  ADS  Google Scholar 

  4. P.W. Palmberg, R.E. De Wames, L.A. Vredevoe, T. Wolker, J. Appl. Phys. 40, 1158 (1969). A) Interaction of an incoming electron with the spin system of magnetic sublattices (a) and (b) was given by \(H_{int} = 2\mathop \sum \limits_{i} I( {{\varvec{r}} - {\varvec{R}}_{i}^{( a )} } ){\varvec{S}}_{e} \cdot {\varvec{S}}_{i}^{( a )} + 2\mathop \sum \limits_{l} I( {{\varvec{r}} - {\varvec{R}}_{l}^{( b )} } ){\varvec{S}}_{e} \cdot {\varvec{S}}_{l}^{( b )}\), where Se is the spin angular momentum of the incoming electron with the position vector r, and Si(a),and Sl(b) are the spin angular moment operator of the atom at Ri(a), Rl(b). B) The set of self-consistent coupled equations; \(\sigma_{\gamma } = B_{S} \left[ {\left( {3/2\tau } \right)\left( {\varepsilon_{\gamma } \sigma_{\gamma } + \delta_{\gamma + 1} \sigma_{\gamma - 1} + \delta_{\gamma + 1} \sigma_{\gamma + 1} } \right)} \right],\) where, \(\sigma_{\gamma }^{\left( a \right)} = - \sigma_{\gamma }^{\left( b \right)} = \sigma_{\gamma }\), \(\tau = T/T_{N} = {{\left( {3/2} \right) kT} \mathord{\left/ {\vphantom {{\left( {3/2} \right) kT} {ZJS}}} \right. \kern-0pt} {ZJS}}\), \( \varepsilon_{\gamma } = ( {Z^{( p )} /Z} )( {J_{\gamma }^{( p )} /J} )\), \(\delta_{\gamma } = ( {Z^{{( {pn} )}} /Z} )( J_{\gamma }^{( n )} /J )\). Z is the total number of nearest neighbors, Z (p) is the number of nearest neighbors on the same plane, Z (n) the number of nearest neighbors on the adjacent plane.

  5. T. Wolfram, R.E. Dewames, W.F. Hall, P.W. Palmberg, Surf. Sci. 28, 45 (1971)

    Article  CAS  ADS  Google Scholar 

  6. T. Suzuki, N. Hirota, H. Tanaka, H. Watanabe, J. Phys. Soc. Jpn. 30, 888 (1971)

    Article  CAS  ADS  Google Scholar 

  7. K. Hayakawa, K. Namikawa, S. Miyake, J. Phys. Soc. Jpn. 31, 1408 (1971)

    Article  CAS  ADS  Google Scholar 

  8. K. Namikawa, K. Hayakawa, S. Miyake, J. Phys. Soc. Jpn. 37, 733 (1974)

    Article  CAS  ADS  Google Scholar 

  9. K. Namikawa, J. Phys. Soc. Jpn. 44, l65 (1978)

    Article  Google Scholar 

  10. C.G. Kinniburgh, J.A. Walker, Surf. Sci. 63, 274 (1977)

    Article  CAS  ADS  Google Scholar 

  11. J.A. Walker, C.G. Kinniburgh, J.A.D. Matthew, Surf. Sci. 78, 221 (1977)

    Article  ADS  Google Scholar 

  12. V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  13. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018)

    Article  CAS  ADS  Google Scholar 

  14. A.G. Gavriliuk, V.V. Struzhkin, A.G. Ivanova, V.B. Prakapenka, A.A. Mironovich, S.N. Aksenov, I.A. Troyan, W. Morgenroth, Commun. Phys. Nat. 6, 1 (2023)

    Google Scholar 

  15. M. Napari, T.N. Huq, R.L.Z. Hoye, J. MacManus-Driscoll, InfoMat 3, 443 (2021)

    Article  Google Scholar 

  16. T. Kohmoto, T. Moriyasu, S. Wakabayashi, H. Jinn, M. Takahara, K. Kakita, J. Infrared Milli Terahz Waves 39, 77 (2018)

    Article  CAS  Google Scholar 

  17. P. Pirro, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Rev. Mater. 6, 1114 (2021)

    Article  ADS  Google Scholar 

  18. J. Das, K.S.R. Menon, J. Magn. Magn. Mater. 449, 415 (2018)

    Article  CAS  ADS  Google Scholar 

  19. U. Kaiser, A. Schwarz, R. Wiesendanger, Nature (London) 446, 522 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blügel, R. Wiesendanger, Science 288, 1805 (2000)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. H. Ohldag, A. Scholl, F. Nolting, S. Anders, F.U. Hillebrecht, J. Stöhr, Phys. Rev. Lett. 86, 2878 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  22. F.U. Hillebrecht, H. Ohldag, N.B. Weber, C. Bethke, U. Mick, M. Weiss, J. Bahrdt, Phys. Rev. Lett. 86, 3419 (2001)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. S. Mandal, K.S.R. Menon, F. Maccherozzi, R. Belkhou, EPL 95, 27006 (2011)

    Article  ADS  Google Scholar 

  24. S. Mandal, K.S.R. Menon, F. Maccherozzi, R. Belkhou, J. Phys. D 44, 255003 (2011)

    Article  ADS  Google Scholar 

  25. S. Mandal, J. Das, K.S.R. Menon, J. Electr. Spectrosc. Relat. Phenom. 208, 51 (2016)

    Article  CAS  Google Scholar 

  26. N.F. Mott, Private communication though Prof. S. Miyake, 1971 (via Prof. T. Nagamine, 1952)

  27. K. Fujiwara, J. Crystallogr. Soc. Jpn. 5, 2 (1963). (in Japanese)

    Google Scholar 

  28. S. Kikuchi, S. Nakagawa, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 21, 256 (1933)

    CAS  Google Scholar 

  29. Crystals obtained one from Nakazumi crystal laboratory, Kobe, and the other from Fuji-titan Co. Kanagawa Japan

  30. G. Held, Bunsen-Magazine 12, 124 (2010)

    Google Scholar 

  31. I. Shimamura, K. Takayanagi (eds.), Electron-Molecule Collisions (Plenum, New York, 1985)

    Google Scholar 

  32. R. Feder, S.F. Alvarado, E. Tamura, E. Kisker, Surf. Sci. 127, 83 (1983)

    Article  CAS  ADS  Google Scholar 

  33. R. Feder, in Polarized Electrons in Surface Physics. Advanced Series in Surface Science. ed. by R. Feder (World Scientific Publishing Co. Pte. Ltd., Singapore, 1985)

    Google Scholar 

  34. E. Tamura, B. Ackermann, R. Feder, J. Phys. C Solid State Phys. 17, 5455 (1984)

    Article  CAS  ADS  Google Scholar 

  35. R. Feder, J. Phys. C Solid State Phys. 14, 2049 (1981)

    Article  CAS  ADS  Google Scholar 

  36. P.J. Jennings, S.M. Thurgate, Surf. Sci. 104, L210 (1981)

    Article  CAS  ADS  Google Scholar 

  37. M. Endo, Master Dissertation, Sophia University, 1994; M. Endo, M. Saito, H. Tanaka, K. Iwai, L. Boesten, K. Ohiwa, The JPS (The Physical Society of Japan) 1994 Autumn Meeting (Sep.1994, Shizuoka Univ.) 3PL13 (in Japanese)

  38. J. Ishikawa, Master Dissertation, Sophia University,1996; J. Ishikawa, M. Yuri, S. Wu, E. Tamura, L. Boesten, H. Tanaka, The JPS 1996 Autumn Meeting, (Sep.1996.Yamaguchi Univ.) 3aPS16 (in Japanese)

  39. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965)

    Google Scholar 

  40. J. C. Slater, T. M. Wilson, and J. W. Wood, Phys. Rev. 179, 28 (1969): The exchange potential in the ith atom employed with Vexi(r) =-4[(3/8πρ(r)]1/3/F(η0), \(F( {\eta_{0} } ) = (1/2) +( {1 - \eta_{0}^{2} /4\eta_{0} } ) ln\left| {1 + \eta_{0} /1 - \eta_{0} } \right|\), where \(\rho ( {\varvec{r}} ) = \sum \left| {\phi_{d} ( {\varvec{r^{\prime}}} )\phi_{d}^{*} ( {\varvec{r}} )} \right|^{2}\), \(\eta_{0} = k_{0} /k_{F} , \) \(k_{F} = ( {3\pi^{2} \rho } )^{1/3} \) (Fermi wave vector), k0 is the incident electron wave vector, and \(\phi_{d} ( {\varvec{r^{\prime}}} )\) is the wavefunction of d-electron.

  41. W.L. Roth, Phys. Rev. 111, 772 (1958)

    Article  CAS  ADS  Google Scholar 

  42. C. Etz, L. Bergqvist, A. Bergman, A. Taroni, O. Eriksson, J. Phys. Condens. Matter 27, 243202 (2015)

    Article  PubMed  ADS  Google Scholar 

  43. B.G. Mendis, J. Ultramic. 239, 13548 (2022)

    Article  Google Scholar 

  44. M. Tinkham, J. Appl. Phys. 33, 1248 (1962)

  45. Y. Mizuno and S. Koide, Phys. Kondens. Materie 2, 166 (1964)

  46. M. Hoshino, M. Endo, J. Ishikawa, H. Tanaka, XXI International Workshop on Low-Energy Positron and Positronium Physics and XXIII International Symposium on Electron-Molecule Collisions and Swarms (POSMOL2023), University of Notre Dame, IN, USA, Abstract book, p. 85 (2023)

Download references

Acknowledgements

We thank the late Prof. M. J. Brunger for evoking the theme of revising with old memories at Adelaide in this memorial issue. In fact, the theme itself is by no means old; and rather, it may still be one of the foundational and contemporary subjects. Bottom-up technology requires processing control at the atomic and molecular levels. Among them, electron interaction phenomena based on Pauli's principle are the most essential of spintronics. Finally, we are deeply grateful to Dr. E. Tamura for his guidance in LEED calculations, and to the authors, including him, who presented some of our data revisited here at conferences.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed equally to the paper.

Corresponding author

Correspondence to Masamitus Hoshino.

Additional information

Guest editors: Márcio Henrique Franco Bettega, Stephen Buckman, Dragana Maric, Sylwia Ptasinska, Ron White.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, M., Tanaka, H. Coherent spin exchange scattering of low-energy electrons by Ni2+ ions in antiferromagnetic crystal NiO under surface wave resonance: experimental and theoretical results revisited. Eur. Phys. J. D 77, 207 (2023). https://doi.org/10.1140/epjd/s10053-023-00773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00773-8

Navigation