Abstract
In this report, we revisit coherent spin exchange scattering experiments with low-energy electrons by Ni2+ ions in antiferromagnetic (AF) crystal NiO. The use of the advanced low-energy electron diffraction (LEED) technique for surface analysis enables more quantitative characterization of surface atoms of Ni2+ ions based on (1) the energy dependence of LEED for “half-order beam” intensity, i.e., the I–V curve, and (2) the temperature dependence at the intensity maximum of 31 eV. In the I–V curve, resonance enhancement is clearly observed, which corresponds to a surface wave resonance (SWR) effect. Under SWR conditions, i.e., the emergence of diffracted beams propagating nearly parallel to the crystal surface, the surface-spin structure properties are investigated through the low-temperature range where the saturation phenomenon can be confirmed. Those energy dependences are also calculated by the relativistic multiple-scattering method, and the temperature dependence is compared with a molecular field model.
Graphical abstract
Similar content being viewed by others
Data Availability Statement
The manuscript has no associated data, or the data will not be deposited. [Authors’ comment: All our data are available from the corresponding author on reasonable request.].
References
N.F. Mott, Proc. Phys. Soc. A 62, 416 (1949)
M. Taguchi, M. Matsunami, Y. Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi, S. Shin, Phys. Rev. Lett. 100, 206401 (2008)
P.W. Palmberg, R.E. DeWames, L.A. Vredevoe, Phys. Rev. Lett. 21, 682 (1968)
P.W. Palmberg, R.E. De Wames, L.A. Vredevoe, T. Wolker, J. Appl. Phys. 40, 1158 (1969). A) Interaction of an incoming electron with the spin system of magnetic sublattices (a) and (b) was given by \(H_{int} = 2\mathop \sum \limits_{i} I( {{\varvec{r}} - {\varvec{R}}_{i}^{( a )} } ){\varvec{S}}_{e} \cdot {\varvec{S}}_{i}^{( a )} + 2\mathop \sum \limits_{l} I( {{\varvec{r}} - {\varvec{R}}_{l}^{( b )} } ){\varvec{S}}_{e} \cdot {\varvec{S}}_{l}^{( b )}\), where Se is the spin angular momentum of the incoming electron with the position vector r, and Si(a),and Sl(b) are the spin angular moment operator of the atom at Ri(a), Rl(b). B) The set of self-consistent coupled equations; \(\sigma_{\gamma } = B_{S} \left[ {\left( {3/2\tau } \right)\left( {\varepsilon_{\gamma } \sigma_{\gamma } + \delta_{\gamma + 1} \sigma_{\gamma - 1} + \delta_{\gamma + 1} \sigma_{\gamma + 1} } \right)} \right],\) where, \(\sigma_{\gamma }^{\left( a \right)} = - \sigma_{\gamma }^{\left( b \right)} = \sigma_{\gamma }\), \(\tau = T/T_{N} = {{\left( {3/2} \right) kT} \mathord{\left/ {\vphantom {{\left( {3/2} \right) kT} {ZJS}}} \right. \kern-0pt} {ZJS}}\), \( \varepsilon_{\gamma } = ( {Z^{( p )} /Z} )( {J_{\gamma }^{( p )} /J} )\), \(\delta_{\gamma } = ( {Z^{{( {pn} )}} /Z} )( J_{\gamma }^{( n )} /J )\). Z is the total number of nearest neighbors, Z (p) is the number of nearest neighbors on the same plane, Z (n) the number of nearest neighbors on the adjacent plane.
T. Wolfram, R.E. Dewames, W.F. Hall, P.W. Palmberg, Surf. Sci. 28, 45 (1971)
T. Suzuki, N. Hirota, H. Tanaka, H. Watanabe, J. Phys. Soc. Jpn. 30, 888 (1971)
K. Hayakawa, K. Namikawa, S. Miyake, J. Phys. Soc. Jpn. 31, 1408 (1971)
K. Namikawa, K. Hayakawa, S. Miyake, J. Phys. Soc. Jpn. 37, 733 (1974)
K. Namikawa, J. Phys. Soc. Jpn. 44, l65 (1978)
C.G. Kinniburgh, J.A. Walker, Surf. Sci. 63, 274 (1977)
J.A. Walker, C.G. Kinniburgh, J.A.D. Matthew, Surf. Sci. 78, 221 (1977)
V.E. Henrich, P.A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994)
V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018)
A.G. Gavriliuk, V.V. Struzhkin, A.G. Ivanova, V.B. Prakapenka, A.A. Mironovich, S.N. Aksenov, I.A. Troyan, W. Morgenroth, Commun. Phys. Nat. 6, 1 (2023)
M. Napari, T.N. Huq, R.L.Z. Hoye, J. MacManus-Driscoll, InfoMat 3, 443 (2021)
T. Kohmoto, T. Moriyasu, S. Wakabayashi, H. Jinn, M. Takahara, K. Kakita, J. Infrared Milli Terahz Waves 39, 77 (2018)
P. Pirro, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Rev. Mater. 6, 1114 (2021)
J. Das, K.S.R. Menon, J. Magn. Magn. Mater. 449, 415 (2018)
U. Kaiser, A. Schwarz, R. Wiesendanger, Nature (London) 446, 522 (2007)
S. Heinze, M. Bode, A. Kubetzka, O. Pietzsch, X. Nie, S. Blügel, R. Wiesendanger, Science 288, 1805 (2000)
H. Ohldag, A. Scholl, F. Nolting, S. Anders, F.U. Hillebrecht, J. Stöhr, Phys. Rev. Lett. 86, 2878 (2001)
F.U. Hillebrecht, H. Ohldag, N.B. Weber, C. Bethke, U. Mick, M. Weiss, J. Bahrdt, Phys. Rev. Lett. 86, 3419 (2001)
S. Mandal, K.S.R. Menon, F. Maccherozzi, R. Belkhou, EPL 95, 27006 (2011)
S. Mandal, K.S.R. Menon, F. Maccherozzi, R. Belkhou, J. Phys. D 44, 255003 (2011)
S. Mandal, J. Das, K.S.R. Menon, J. Electr. Spectrosc. Relat. Phenom. 208, 51 (2016)
N.F. Mott, Private communication though Prof. S. Miyake, 1971 (via Prof. T. Nagamine, 1952)
K. Fujiwara, J. Crystallogr. Soc. Jpn. 5, 2 (1963). (in Japanese)
S. Kikuchi, S. Nakagawa, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 21, 256 (1933)
Crystals obtained one from Nakazumi crystal laboratory, Kobe, and the other from Fuji-titan Co. Kanagawa Japan
G. Held, Bunsen-Magazine 12, 124 (2010)
I. Shimamura, K. Takayanagi (eds.), Electron-Molecule Collisions (Plenum, New York, 1985)
R. Feder, S.F. Alvarado, E. Tamura, E. Kisker, Surf. Sci. 127, 83 (1983)
R. Feder, in Polarized Electrons in Surface Physics. Advanced Series in Surface Science. ed. by R. Feder (World Scientific Publishing Co. Pte. Ltd., Singapore, 1985)
E. Tamura, B. Ackermann, R. Feder, J. Phys. C Solid State Phys. 17, 5455 (1984)
R. Feder, J. Phys. C Solid State Phys. 14, 2049 (1981)
P.J. Jennings, S.M. Thurgate, Surf. Sci. 104, L210 (1981)
M. Endo, Master Dissertation, Sophia University, 1994; M. Endo, M. Saito, H. Tanaka, K. Iwai, L. Boesten, K. Ohiwa, The JPS (The Physical Society of Japan) 1994 Autumn Meeting (Sep.1994, Shizuoka Univ.) 3PL13 (in Japanese)
J. Ishikawa, Master Dissertation, Sophia University,1996; J. Ishikawa, M. Yuri, S. Wu, E. Tamura, L. Boesten, H. Tanaka, The JPS 1996 Autumn Meeting, (Sep.1996.Yamaguchi Univ.) 3aPS16 (in Japanese)
N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965)
J. C. Slater, T. M. Wilson, and J. W. Wood, Phys. Rev. 179, 28 (1969): The exchange potential in the ith atom employed with Vexi(r) =-4[(3/8πρ(r)]1/3/F(η0), \(F( {\eta_{0} } ) = (1/2) +( {1 - \eta_{0}^{2} /4\eta_{0} } ) ln\left| {1 + \eta_{0} /1 - \eta_{0} } \right|\), where \(\rho ( {\varvec{r}} ) = \sum \left| {\phi_{d} ( {\varvec{r^{\prime}}} )\phi_{d}^{*} ( {\varvec{r}} )} \right|^{2}\), \(\eta_{0} = k_{0} /k_{F} , \) \(k_{F} = ( {3\pi^{2} \rho } )^{1/3} \) (Fermi wave vector), k0 is the incident electron wave vector, and \(\phi_{d} ( {\varvec{r^{\prime}}} )\) is the wavefunction of d-electron.
W.L. Roth, Phys. Rev. 111, 772 (1958)
C. Etz, L. Bergqvist, A. Bergman, A. Taroni, O. Eriksson, J. Phys. Condens. Matter 27, 243202 (2015)
B.G. Mendis, J. Ultramic. 239, 13548 (2022)
M. Tinkham, J. Appl. Phys. 33, 1248 (1962)
Y. Mizuno and S. Koide, Phys. Kondens. Materie 2, 166 (1964)
M. Hoshino, M. Endo, J. Ishikawa, H. Tanaka, XXI International Workshop on Low-Energy Positron and Positronium Physics and XXIII International Symposium on Electron-Molecule Collisions and Swarms (POSMOL2023), University of Notre Dame, IN, USA, Abstract book, p. 85 (2023)
Acknowledgements
We thank the late Prof. M. J. Brunger for evoking the theme of revising with old memories at Adelaide in this memorial issue. In fact, the theme itself is by no means old; and rather, it may still be one of the foundational and contemporary subjects. Bottom-up technology requires processing control at the atomic and molecular levels. Among them, electron interaction phenomena based on Pauli's principle are the most essential of spintronics. Finally, we are deeply grateful to Dr. E. Tamura for his guidance in LEED calculations, and to the authors, including him, who presented some of our data revisited here at conferences.
Author information
Authors and Affiliations
Contributions
Both authors have contributed equally to the paper.
Corresponding author
Additional information
Guest editors: Márcio Henrique Franco Bettega, Stephen Buckman, Dragana Maric, Sylwia Ptasinska, Ron White.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hoshino, M., Tanaka, H. Coherent spin exchange scattering of low-energy electrons by Ni2+ ions in antiferromagnetic crystal NiO under surface wave resonance: experimental and theoretical results revisited. Eur. Phys. J. D 77, 207 (2023). https://doi.org/10.1140/epjd/s10053-023-00773-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjd/s10053-023-00773-8