Skip to main content
Log in

Ground state of Tonks–Girardeau gas under density-dependent gauge potential in a one-dimensional harmonic potential

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the ground state of Tonks–Girardeau gas under density-dependent gauge potential. With Bose–Fermi mapping method, we obtain the exact ground-state wavefunction for the system confined in a harmonic potential. Based on the ground-state wavefunction, the reduced one-body density matrix (ROBDM), natural orbitals and their occupations, and the momentum distributions are obtained. Compared with the case without gauge potential, the present wavefunction and ROBDM have additional phase factors induced by gauge potential. The momentum distribution is the convolution of that without gauge potential to the Fourier transformation of definite integral of gauge potential. It is shown that because of the density-dependent gauge potential, the peak of momentum distributions deviates from zero momentum and the Bose gas takes finite total momentum. In particular, the momentum distribution is no longer symmetric although the total momentum can become zero by adding a constant to the gauge potential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. C. Chin, R. Grimm, P. Julienne, E. Tiesingaand, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  2. E. Haller, M.J. Mark, R. Hart, J.G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, H.-C. Nägerl, Phys. Rev. Lett. 104, 153203 (2010)

    Article  ADS  Google Scholar 

  3. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  4. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  5. N.J. van Druten, W. Ketterle, Phys. Rev. Lett. 79, 549 (1997)

    Article  ADS  Google Scholar 

  6. T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011)

    Article  ADS  Google Scholar 

  7. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  8. A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012)

    Article  ADS  Google Scholar 

  9. X.-W. Guan, M.T. Batchelor, C. Li, Rev. Mod. Phys. 85, 1633 (2013)

    Article  ADS  Google Scholar 

  10. Y. Hao, Y. Zhang, J.Q. Liang, S. Chen, Phys. Rev. A. 73, 063617 (2006)

    Article  ADS  Google Scholar 

  11. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  12. J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  13. N. Goldman, G. Juzeliunas, P. Öhberg, I.B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)

    Article  ADS  Google Scholar 

  14. Y.J. Lin, R. Compton, A. Perry, W. Phillips, J. Porto, I. Spielman, Phys. Rev. Lett. 102, 130401 (2009)

    Article  ADS  Google Scholar 

  15. Y.J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto, I.B. Spielman, Nature (London) 462, 628 (2009)

    Article  ADS  Google Scholar 

  16. Y.J. Lin, R.L. Compton, K. Jiménez-García, W.D. Phillips, J.V. Porto, I.B. Spielman, Nat. Phys. 7, 531 (2011)

    Article  Google Scholar 

  17. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  18. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  19. J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013)

    Article  Google Scholar 

  20. C.V. Parker, L.-C. Ha, C. Chin, Nat. Phys. 9, 769 (2013)

    Article  Google Scholar 

  21. Y.J. Lin, K. Jiménez-García, I.B. Spielman, Nature (London) 471, 83 (2011)

    Article  ADS  Google Scholar 

  22. M.J. Edmonds, M. Valiente, G. Juzeliunas, L. Santos, P. Öhberg, Phys. Rev. Lett. 110, 085301 (2013)

    Article  ADS  Google Scholar 

  23. Sebastian Greschner, Daniel Huerga, Gaoyong Sun, Dario Poletti, Luis Santos, Phys. Rev. B 92, 115120 (2015)

    Article  ADS  Google Scholar 

  24. R.J. Dingwall, P. Öhberg, Phys. Rev. A 99, 023609 (2019)

    Article  ADS  Google Scholar 

  25. S. Greschner, G. Sun, D. Poletti, L. Santos, Phys. Rev. Lett. 113, 215303 (2014)

    Article  ADS  Google Scholar 

  26. L.W. Clark, B.M. Anderson, L. Feng, A. Gaj, K. Levin, C. Chin, Phys. Rev. Lett. 121, 030402 (2018)

    Article  ADS  Google Scholar 

  27. S. Greschner, L. Santos, Phys. Rev. Lett. 115, 053002 (2015)

    Article  ADS  Google Scholar 

  28. N.R. Cooper, J. Dalibard, I.B. Spielman, Rev. Mod. Phys. 91, 015005 (2019)

    Article  ADS  Google Scholar 

  29. M.C. Banuls, K. Cichy, Rep. Prog. Phys. 83, 024401 (2020)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-Relativistic Theory, Volume 3 of a Course of Theoretical Physics. Translated by J.B. Sykes and J.S. Bell. XV+455 Butterworth-Heinemann, Linacre House, Hordan Hill, Oxford OX2 8DP (1999)

  31. P.J. Forrester, N.E. Frankel, T.M. Garoni, N.S. Witte, Phys. Rev. A 67, 043607 (2003)

    Article  ADS  Google Scholar 

  32. H.G. Vaidya, C.A. Tracy, Phys. Rev. Lett. 42, 3 (1979)

    Article  ADS  Google Scholar 

  33. M.D. Girardeau, E.M. Wright, J.M. Triscari, Phys. Rev. A 63, 033601 (2001)

    Article  ADS  Google Scholar 

  34. Yajiang Hao, Phys. Rev. A 96, 063627 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China under Grant No. 11774026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajiang Hao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y. Ground state of Tonks–Girardeau gas under density-dependent gauge potential in a one-dimensional harmonic potential. Eur. Phys. J. D 77, 164 (2023). https://doi.org/10.1140/epjd/s10053-023-00745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00745-y

Navigation