Skip to main content
Log in

Survey of vacuum ultraviolet experimental data in relation to radiation characterization for Earth high-speed re-entry

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This contribution is a survey of the available experimental radiation data measured in the VUV range related to hypersonic atmospheric entry. The objective is to identify the datasets already gathered during aerothermodynamics studies for preparing Mars, Venus, and sample return missions. The final goal is to identify the most valuable datasets for comparisons with future data measured in the European shock-tube ESTHER. Due to the limited number of studies covering VUV radiation in relation to space exploration missions, the review has been extended to domains such as nuclear fusion, exobiology, chemical and process engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Lino da Silva, A. Chikhaoui, A. Smith & M. Dudeck, Development of a kinetic shock-tube for planetary exploration: the ESTHER shock-tube. In: 5th International Workshop on Radiation and High Temperature Gases in Atmospheric Entry”, Barcelona, 16–19 Oct. (2012)

  2. Ph. Reynier, Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. Prog. Aerosp. Sci. 85, 1–32 (2016)

    Article  Google Scholar 

  3. D. Olynick, Y.-K. Chen, M.E. Tauber, Aerothermodynamics of the stardust sample return capsule. J. Spacecr. Rockets. 36(3), 442–462 (1999)

    Article  ADS  Google Scholar 

  4. C. Y. Tang, and M. J. Wright, Analysis of the forebody aeroheating environment during Genesis sample return capsule reentry. In : AIAA Paper 2007–1207, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Navada, 8–11 Jan., (2007)

  5. T. Suzuki, K. Fujita, T. Yamada, Y. Inatani, N. Ishii, Postflight thermal protection system analysis of Hayabusa reentry capsule. J. Spacecr. Rockets. 51(1), 96–105 (2014)

    Article  ADS  Google Scholar 

  6. http://esther.ist.utl.pt/pages/ESTHER_brochure.pdf

  7. Martinez, Shock layer radiation measurements for Mars and Venus entry conditions in an electric arc shock tube, Master of Science Thesis, San José State University, Dec. (2010)

  8. T. Saito, Calibration and characterization of UV/VUV detectors, STCE (Solar-Terrestrial Centre of Excellence) Seminar, Bruxelles, 24 Sept. (2009)

  9. P.H. Reynier, Survey of CO2 radiation experimental data. Cornell University Library, Arxiv 2007.04869, https://arxiv.org/abs/2007.04869, 9 July (2020)

  10. V. Piffl, A. Burdakov, N. Korneva, S. Polosatkin, and V. Weinzettl, Measurement of line radiation power in the CASTOR tokamak. In: 33rd EPS Conference on Plasma Physics, ECA Vol. 30I, pp. 2.196, Rome, 19–23 June (2006)

  11. S.G. Vasenin, N.I. Arkhipov, V.P. Bakhtin, S.M. Kurkin, V.M. Safronov, D.A. Toporkov, H. Wuerz, A.M. Zhitlukhin, VUV radiation during plasma/surface interaction under plasma stream power density of 20–40 MW/cm2. Probl. At. Sci. Technol. Ser. Plasma Phys. 6, 97–99 (2000)

    Google Scholar 

  12. O. Venot, N. Fray, Y. Bénilan, M.-C. Gazeau, E. Hébrard, G. Larcher, M. Schwell, M. Dobrijevic, and F. Selsis, High-temperature measurements of VUV absorption cross sections of CO2 and their application to exoplanets. Astronomy Astrophys p. 9 (2013)

  13. M. Schwell, Photochimie des molécules d'intérêt exobiologique dans l'UV lointain, Habilitation à Diriger les Recherches, Université Paris 7, (2007)

  14. M. Schwell, Y. Bénilan, N. Fray, M.-C. Gazeau, E. Es-Sebbar, G.A. Garcia, L. Nahon, N. Champion, S. Leach, VUV photoionization of acetamide studied by electron/ion coincidence spectroscopy in the 8–24 eV photon range energy. Chem. Phys. 393, 107–116 (2012)

    Article  Google Scholar 

  15. A.P. Conde, J. Kruse, O. Faucher, P. Tzallas, E.P. Benis, D. Charalambidis, Realization of time resolved two-VUV photon ionization. Phys. Rev. A At. Mol. Opt. Phys. 79(6), 061405 (2009)

    Article  ADS  Google Scholar 

  16. V. M. Orlovskii, S. B. Alekseev, V. A. Panarin, A. I. Suslov, V. F. Tarasenko, Y. A. Poplavskiy, L. N. Sinitsa, Y. V. Medvedev, Y. I. Polygalov, and M. B. Shubin, Natural gas conversion under influence of VUV radiation. In: 10th International Conference on Modification of Materials with particle beams and Plasma Flows, pp. 456–458, Tomsk, Russia, 19–24 Sept. (2010)

  17. N. Kristianpoller, D. Weiss, N. Khaidukov, V. Makhov, R. Chen, Thermoluminescence of some Pr3+ doped fluoride crystals. Radiat. Meas. 43, 245–248 (2008)

    Article  Google Scholar 

  18. J. Eck, M. Balat-Pichelin, and J.-L. Sans, Solar Probe + mission: VUV radiation coupled to high temperatures on carbo/carbon composites, IPPW7, Barcelona, 14–18 June, (2010)

  19. P. Jenniskens, M.A. Wilson, M. Winter, C.O. Laux, Resolved CN band profile of Stardust capsule radiation peak heating. J. Spacecr. Rockets. 47(6), 873–877 (2010)

    Article  ADS  Google Scholar 

  20. S. Löhle, R. Wernitz, G. Herdrich, M. Fertig, H.-P. Röser, H. Ritter, Airborne re-entry observation experiment SLIT: UV spectroscopy during STARDUST and ATV1 re-entry. CEAS Space J. (2010). https://doi.org/10.1007/s12567-010-0005-3

    Article  Google Scholar 

  21. H. Liebhart, R. Wernitz, G. Herdrich, S. Fasoulas, H.-P. Röser, J. Merrifield and J. Beck, Advances for radiation modeling for Earth re-entry in PARADE: application to the STARDUST atmospheric entry, AIAA-2012–3196. In : 43rd AIAA Thermophysics Conference, New Orleans, Louisiana, June 25–28, (2012)

  22. G. Herdrich, M. Werner, R. Wernitz, S. Fasoulas, H. Ritter, Re-evaluation of the SLIT in-flight data for STARDUST. In : 30th International Space Technology Symposium, 34th International Electric Propulsion Conference & 6th NSAT, Kobe, Japan, July (2015)

  23. G. Yamada, H. Takayanagi, T. Suzuki, K. Fujita, Analysis of shock layer radiation from the vacuum-ultraviolet to near-infrared regions. Trans. Japan Soc. Aero. Space Sci. 55(1), 60–67 (2012)

    Article  ADS  Google Scholar 

  24. M. Bugel, P.H. Reynier, & A. Smith, Survey of European and major ISC facilities for supporting Mars and sample return missions aerothermodynamics analysis and tests required for thermal protection system and dynamic stability. Int. J. Aerospace Eng. 2011: 957629, (2011)

  25. S. A. Berry, T. J. Horvath, R. P. Lillard, B. S. Kirk, and A. M. Cassady, Aerothermal testing for project Orion crew exploration vehicle, AIAA Paper 2009–3842. In: 41st AIAA Thermophysics Conference, San Antonio, 22–25 June (2009)

  26. A.M. Brandis, C.O. Johnson, B.A. Cruden, D.K. Prabhu, Equilibrium radiative heating from 9.5 to 15.5 km/s for Earth atmospheric entry. J. Thermophys. Heat Transf. 31(1), 178–192 (2017)

    Article  Google Scholar 

  27. J. H. Grinstead, M. C. Wilder, J. Olejniczak, D. W. Bogdanoff, G. A. Allen, K. Dang, and M. J. Forrest, Shock-heated air radiation measurements at Lunar return conditions, AIAA Paper 2008–1244. In: 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NA, 7–10 Jan. (2008)

  28. D. W. Bogdanoff, Shock-tube experiments for Earth and Mars entry conditions, RTO-EN-AVT-162–13, Non-equilibrium gas dynamics: from physical models to hypersonic flights, VKI, Belgium, Sept. (2009)

  29. D. Bose, E. McCorkle, D. Bogdanoff, and G. A. Allen, Comparisons of air radiation model with shock tube measurements, AIAA Paper AIAA Paper 2009–1030. In: 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, 5–8 Jan. (2009)

  30. E. Whiting, C. Park, Y. Liu, J. Arnold, & J. Paterson, NEQAIR96, Nonequilibrium and equilibrium radiative transport and spectra program: User Manual, NASA RP-1389 (1996)

  31. B.A. Cruden, Electron density measurement in reentry shocks for Lunar return. J. Thermophys. Heat Transf. 26(2), 222–230 (2012)

    Article  Google Scholar 

  32. C. Johnston, B. Hollis, K. Sutton, Spectrum modeling for air, shock-layer radiation at lunar-return conditions. J. Spacecr. Rocket. 45(5), 865–878 (2008)

    Article  ADS  Google Scholar 

  33. C.O. Johnston, B. Hollis, K. Sutton, Non-Boltzmann modeling for air shock layers at Lunar return conditions. J. Spacecr. Rockets 45(5), 879–890 (2008)

    Article  ADS  Google Scholar 

  34. A. Lemal, C.M. Jacobs, M.-Y. Perrin, C.O. Laux, P. Tran, E. Raynaud, Prediction of nonequilibrium plasma radiation behind a shock wave. J. Thermophys. Heat Transf. 30(1), 197–210 (2016)

    Article  Google Scholar 

  35. K. Fujita, M. Mizuno, K. Ishida, T. Ito, Spectroscopic flow evaluation in inductively coupled plasma wind-tunnel. J. Thermophys. Heat Transf. 22, 685–694 (2008)

    Article  Google Scholar 

  36. T. Hermann, S. Löhle, U. Bauder, R. Morgan, H. Wei, S. Fasoulas, Quantitative emission spectroscopy for superorbital reentry in expansion tube X2. J. Thermophys. Heat Transf. 31(2), 257–268 (2017)

    Article  Google Scholar 

  37. M. Fertig, G. Herdrich, The advanced URANUS Navier-Stokes code for the simulation of nonequilibrium re-entry flows. Trans. Japan Soc. Aeronaut. Space Sci. Technol. 7, 15–24 (2009)

    Google Scholar 

  38. A. J. Smith, J. Beck, M. Fertig, H. Liebhart, and L. Marraffa, Plasma radiation database: PARADE v3.2, Final Report TR28/96 Issue 9, Fluid Gravity Engineering, Emsworth, United Kingdom (2013)

  39. C. M. Jacobs, U. A. Sheikh, M. E. MacDonald, C. O. Laux, and R. G. Morgan, Vacuum ultraviolet radiation studies in a plasma torch facility from 170–200 nm, AIAA Paper 2013–3015. In: 44th AIAA Thermophysics Conference, San Diego, June 24–27, (2013)

  40. C. M. Jacobs, U. A. Sheikh, M. E. MacDonald, R. G. Morgan, and C. O. Laux, Vacuum ultraviolet radiation studies in a plasma torch facility. In: 5th EUCASS Conference, Munich, 1–4 July (2013)

  41. V. Lago, Radiation measurements in low pressure high enthalpy flows from VUV to near IR region, AIAA Paper 2015–3516. In: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glagow, 6–9 July (2015)

  42. T. Hermann, S. Löhle, F. Zander, H. Fulge, S. Fasoulas, Characterization of a re-entry plasma wind-tunnel flow with vacuum-ultraviolet to near-infrared spectroscopy. J. Thermophys. Heat Transf. 30(3), 673–688 (2016)

    Article  Google Scholar 

  43. T. Hermann, S. Löhle, S. Fasoulas, P. Leyland, L. Marraffa, J.-M. Bouilly, Influence of ablation on vacuum-ultraviolet radiation in a plasma wind tunnel flow. J Thermophys. Heat Transf. 31(3), 575–585 (2017)

    Article  Google Scholar 

  44. http://www.specair-radiation.net

  45. Ph. Reynier, Survey of convective blockage for planetary entries. Acta Astronaut. 83, 175–195 (2013)

    Article  ADS  Google Scholar 

  46. B.A. Cruden, D. Prabhu, R. Martinez, Absolute radiation measurement in Venus and Mars entry conditions. J. Spacecr. Rockets 49(6), 1069–1079 (2012)

    Article  ADS  Google Scholar 

  47. D. Bose, J. H. Grinstead, D. W. Bogdanoff, and M. J. Wright, Shock layer radiation measurements and analysis for Mars entry. In: Proceedings of the 3rd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry (ESA SP-667, Jan. 2009), Heraklion, Greece, 20 Sept.–3 Oct. (2008)

  48. J.H. Grinstead, M.J. Wright, D.W. Bogdanoff, G.A. Allen, Shock radiation measurements for Mars aerocapture radiative heating analysis. J. Thermophys. Heat Transf. 23(2), 249–255 (2009)

    Article  Google Scholar 

  49. H. Takayanagi, and K. Fujita, Absolute radiation measurements behind strong shock wave in carbon dioxide flow for Mars aerocapture missions. In: AIAA Paper 2012–2744, (2012)

  50. E.M. Anokhin, T. Ivanova, A.Y. Starikovskii, Strong shock waves in CO2:N2:Ar mixtures, ESA SP-629. In: Proceedings of 2nd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Rome, Italy, 6–8 September (2006)

  51. Ph. Reynier, Survey of CO2 radiation experimental data in relation with planetary entry. Galaxies 9(1), 9010015 (2021)

    Article  ADS  Google Scholar 

  52. H. Takayanagi, and K. Fujita, Radiation measurements from carbon dioxide from VUV to IR region, AIAA Paper 2011–3631. In: 42nd AIAA Thermophysics Conference, Honolulu, 27–30 June (2011)

  53. N. Brémare, S. Y. Hyun, D. Studer, P. Boubert, and P. Vervish, Radiation and chemistry of CO2 and air inductive plasmas as freejets and interaction with samples. In: AIAA Paper 2011–3624

  54. N. Brémare, and P. Boubert, New ICP experimental conditions for the study of air and CO2 plasma radiation, ESA SP-714. In: Proceedings of the 5rd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Barcelona, 16–19 Oct. (2012)

  55. M. Lino Da Silva, Simulation des propriétés radiatives du plasma entourant un véhicule traversant une atmosphère planétaire à vitesse hypersonique: application à la planète Mars, Thèse de Doctorat, Université d’Orléans, France, 9 Déc. (2004)

  56. C. O. Johnston, A comparison of EAST shock-tube radiation measurements with a new air radiation model. In: AIAA Paper 1245–2008

  57. R. Parker, A. Dufrene, M. Holden, & T. Wakeman, Shock-front emission measurements at 10 km/s. In: AIAA Paper 2011–715 (2011)

  58. A. M. Brandis, Validation of shock layer radiation: perspectives for test cases, ESA SP-714. In: 5th International Workshop on Radiation and High Temperature Gases in Atmospheric Entry, Barcelona, 16–19 Oct. (2012)

  59. A. M. Brandis, Analysis of shock tube equilibrium radiation for Earth re-entry applications, Annual Research Briefs, pp. 83–91, Center for turbulence Research, University of Stanford, (2009)

Download references

Acknowledgements

The research leading to these results has been partially supported by Fluid Gravity Engineering and Instituto Superior Tecnico of Lisbon under European Space Agency contract 23086. This contribution has been presented at the 12th ICAMDATA Conference hold in Mola di Bari (Italy), on Sept. 25-29, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Reynier.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynier, P. Survey of vacuum ultraviolet experimental data in relation to radiation characterization for Earth high-speed re-entry. Eur. Phys. J. D 77, 160 (2023). https://doi.org/10.1140/epjd/s10053-023-00738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00738-x

Navigation