Skip to main content
Log in

Theoretical study on dielectronic recombination process and X-ray line polarization of B-like Ar13+ ion

  • Regular Article - Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Theoretical investigations of K-shell Δn = 1 (1s → 2l) dielectronic recombination (DR) of B-like Ar13+ ions are performed. The resonance energies, autoionization and radiative rates, as well as DR strengths, are obtained with inclusion of Breit and QED corrections using the Flexible Atomic Code. Furthermore, the differential cross sections, linear polarization, and polarization-dependent spectra for KLL DR process are presented for X-ray dielectronic satellite lines. The present results indicate the importance of high-order trielectronic and quadruelectronic recombination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. H.S.W. Massey et al., The Properties of Neutral and Ionized Atomic Oxygen and Their Influence on the Upper Atmosphere. Rep. Prog. Phys. 9, 62 (1942)

    Article  ADS  Google Scholar 

  2. A. Burgess, Delectronic recombination and the temperature of the solar corona. Astrophys. J. 139, 776 (1964)

    Article  ADS  Google Scholar 

  3. J. Dubau et al., Dielectronic recombination and its applications in astronomy. Rep. Prog. Phys. 43, 199 (1980)

    Article  ADS  Google Scholar 

  4. R. Ali et al., Dielectronic recombination on and electron-impact excitation of Heliumlike argon. Phys. Rev. A 44, 223 (1991)

    Article  ADS  Google Scholar 

  5. D.A. Knapp et al., Dielectronic recombination of Heliumlike ions. Phys. Rev. A 47, 2039 (1993)

    Article  ADS  Google Scholar 

  6. M. Tokman et al., Dielectronic recombination resonances in F6+. Phys Rev A 66, 012703 (2002)

    Article  ADS  Google Scholar 

  7. M. Schnell et al., Observation of trielectronic recombination in Be-like Cl Ions. Phys. Rev. Lett. 91, 043001 (2003)

    Article  ADS  Google Scholar 

  8. C. Beilmann et al., Intershell trielectronic recombination with k -shell excitation in Kr30+. Phys. Rev. A 80, 050702 (2009)

    Article  ADS  Google Scholar 

  9. C. Beilmann et al., Prominent higher-order contributions to electronic recombination. Phys. Rev. Lett. 107, 143201 (2011)

    Article  ADS  Google Scholar 

  10. C. Beilmann et al., Major role of multielectronic K - L intershell resonant recombination processes in Li- to O-like Ions of Ar, Fe, and Kr. Phys. Rev. A 88, 062706 (2013)

    Article  ADS  Google Scholar 

  11. H. Jörg et al., Linear polarization of X-Ray transitions due to dielectronic recombination in highly charged ions. Phys. Rev. A 91, 042705 (2015)

    Article  ADS  Google Scholar 

  12. C. Shah et al., Polarization measurement of dielectronic recombination transitions in highly charged krypton ions. Phys. Rev. A 92, 042702 (2015)

    Article  ADS  Google Scholar 

  13. C. Shah et al., Erratum: Polarization Measurement of Dielectronic Recombination Transitions in Highly Charged Krypton Ions. Phys. Rev. A 94, 481 (2016)

  14. C. Shah et al., Polarization of K-shell dielectronic recombination satellite lines of Fe Xix-Xxv and its application for diagnostics of anisotropies of hot plasmas. Astrophys. J. Suppl. Ser. 234, 27 (2018)

    Article  ADS  Google Scholar 

  15. Z.K. Huang et al., Dielectronic and trielectronic recombination rate coefficients of Be-like Ar14+. Astrophys. J. Suppl. Ser. 235, 2 (2018)

    Article  ADS  Google Scholar 

  16. D.H. Zhang et al., Calculations of Dielectronic Recombination and Electron-impact Excitation Rate Coefficients of Highly Charged Sulfur Ions, Astrophys. J. Suppl. Ser. 247, 22 (2020)

  17. L.Y. Xie et al., Calculations of electron-impact excitation and dielectronic recombination rate coefficients of highly charged silicon ions, Phys. Rev. A 105, 012823 (2022)

  18. K. Lagattuta et al. X-Ray emission calculations for plasma over a wide range of Z. J. Quant. Spectrosc. Radiat. Transf. 58, 703 (1997)

    Article  ADS  Google Scholar 

  19. M.F. Gu et al., Laboratory measurements of Iron L-shell emission: 3→2 transitions of Fe XXI-XXIV between 10.5 and 12.5 Å. Astrophys. J. 563, 462 (2001)

    Article  ADS  Google Scholar 

  20. Y. Hahn, Electron-Ion recombination processes-an overview. Rep. Prog. Phys. 60, 691 (1997)

    Article  ADS  Google Scholar 

  21. C.W. Danforth et al., The Low-z Intergalactic Medium III HI and Metal Absorbers at Z< 0.4. Astrophys. J. 679 194 (2008)

  22. K.P. Dere et al., CHIANTI—An Atomic Database for Emission Lines. IV. Extension to X-Ray Wavelengths, Astrophys. J. Suppl. Ser. 134, 331 (2001)

  23. F. Bombarda et al., Dielectronic satellite spectrum of heliumlike argon: a contribution to the physics of highly charged ions and plasma impurity transport. Phys. Rev. A 32, 2374 (1985)

    Article  ADS  Google Scholar 

  24. J. Rice et al., Observations of impurity toroidal rotation suppression with ITB formation in ICRF and Ohmic H mode Alcator C-Mod Plasmas. Nucl. Fusion 41, 277 (2001)

    Article  ADS  Google Scholar 

  25. K. Fournier et al., Ionization state distribution and radiative cooling rate for argon in a low-density plasma. At. Data Nucl. Data Tables 70, 231 (1998)

    Article  ADS  Google Scholar 

  26. D.R. DeWitt et al., Dielectronic recombination of boronlike argon. Phys. Rev. A 53, 2327 (1996)

    Article  ADS  Google Scholar 

  27. Z.K. Huang et al., Dielectronic recombination at low energy range with boron-like Ar13+at the CSRm. X-Ray Spectrom. 49, 155 (2020)

    Article  ADS  Google Scholar 

  28. K.B. Fournier et al., Dielectronic recombination rates in H-like Ar17+ to Ne-like Ar8+. Phys. Rev. A 56, 4715 (1997)

    Article  ADS  Google Scholar 

  29. M.F. Gu, The flexible atomic code. Can. J. Phys. 86, 675 (2008)

    Article  ADS  Google Scholar 

  30. N. Nakamura, Breit interaction effect on dielectronic recombination of heavy ions. J. Phys. B At. Mol. Opt. Phys. 49, 212001 (2016)

    Article  ADS  Google Scholar 

  31. X.M. Tong et al., Mechanism of dominance of the breit interaction in dielectronic recombination. J. Phys. B At. Mol. Opt. Phys. 48, 144002 (2015)

    Article  ADS  Google Scholar 

  32. X.L. Guo et al., Calculations with spectroscopic accuracy for the ground configuration (3d9) forbidden transition in Co-like ions. Phys Rev A 93, 012513 (2016)

    Article  ADS  Google Scholar 

  33. D. Bernhardt et al., Breit interaction in dielectronic recombination of hydrogenlike uranium. Phys Rev A 83, 020701 (2011)

    Article  ADS  Google Scholar 

  34. S.W. Dipti et al., Linear polarization of anisotropically excited X-Ray lines from the n = 2 Complex in He-like Ar16+. J. Phys. B At. Mol. Opt. Phys. 53, 115701 (2020)

    Article  ADS  Google Scholar 

  35. A. Gall et al., Measurements of linear polarization of satellite transitions from Li-and Be-like Ar Ions. J. Phys. B At. Mol. Opt. Phys. 53, 145004 (2020)

    Article  ADS  Google Scholar 

  36. L. A. Vainshtein et al., Wavelengths and transition probabilities of satellites to resonance lines of H- and He-like Ions. At. Data Nucl. Data Tables 21, 49 (1978)

    Article  ADS  Google Scholar 

  37. N. Nakamura et al., Evidence for strong breit interaction in dielectronic recombination of highly charged heavy ions. Phys. Rev. Lett. 100, 073203 (2008)

    Article  ADS  Google Scholar 

  38. J. Zeng et al., Electron impact collision strengths and oscillator strengths for Ge-, Ga-, Zn-, Cu-, Ni-, and Co-like Au Ions. At. Data Nucl. Data Tables 93, 199 (2007)

    Article  ADS  Google Scholar 

  39. Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2023, June 24]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (Grant No: 2022YFA1602500), the Natural Science Foundation of China (Grant Nos: 12064041, 11,874,051, 12,104,373), funds for Innovative Fundamental Research Group Project of Gansu Province (20JR5RA541), and doctoral research fund of Lanzhou City University (LZCU-BS2019-50).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shengbo Niu. The first draft of the manuscript was written by Shengbo Niu. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lu-You Xie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, SB., Ma, YL., He, WL. et al. Theoretical study on dielectronic recombination process and X-ray line polarization of B-like Ar13+ ion. Eur. Phys. J. D 77, 155 (2023). https://doi.org/10.1140/epjd/s10053-023-00732-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00732-3

Navigation