Skip to main content
Log in

DFTB study of energetic and structural properties of nano-onions with point defects in their structure

  • Regular Article – Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Since the experimental works published by Ugarte in 1993, nested almost perfect graphitic spheres have been generated in the condensed phase by irradiation with high-energy electrons of graphitic particles. The quasi-spherical shapes of these molecular systems were more marked than those obtained by Ijima by applying the arc-discharge method to amorphous carbon films. Although Ugarte was able to describe the influence of parameters such as temperature and dose of electronic radiation on the transformation of these structures, theoretically it has not been possible to explain the causes of the triggering of the above-mentioned process because of the complexity of these systems. Using a computational method based on density functional theory with tight-binding approximation (DFTB), the geometries of fullerenes of order \(n\le 6\) (2160 atoms) and carbon nano-onions (CNOs) of up to five layers were optimized, and the different energetic and geometric parameters of fullerenes and polyhedral CNOs were calculated. By introducing in the structure of these nanomaterials the point defects that are commonly produced during their irradiation (monovacancies, divacancies, and Stone–Wales), the possible structural deformations caused in these arrangements, as well as the formation energies were analyzed. The results obtained allow us to verify that \(\text {p}-\text {p}\) divacancies can modify the outermost nano-onion layers with an effect similar to that described experimentally by Ugarte.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

“This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article (and its supplementary information files).].

Notes

  1. (A regular enneagon (or nonagon) is that regular polygon of nine sides (and nine vertices) that has all its sides of the same length and all its internal angles equal.)

References

  1. J.L. Delgado, M.A. Herranz, N.J. Martín, Mater. Chem. 18, 1417 (2008). https://doi.org/10.1039/b717218d

    Article  Google Scholar 

  2. A. Palkar, F. Melin, C.M. Cardona et al., Chem. Asian J. 2, 625 (2007). https://doi.org/10.1002/asia.200600426

    Article  Google Scholar 

  3. J.M. Castagnino, Acta Bioquímica Clínica Latinoamericana 41, 189 (2007)

    Google Scholar 

  4. R.G. Amorim, A. Fazzio, A. Antonelli et al., Nano Lett. 7, 2459 (2007). https://doi.org/10.1021/nl071217v

    Article  ADS  Google Scholar 

  5. C.P. Ewels, M.I. Heggie, P.R. Briddon, Chem. Phys. Lett. 351, 178 (2002). https://doi.org/10.1016/S0009-2614(01)01371-9

    Article  ADS  Google Scholar 

  6. F. Banhart, Phys. Solid State 44, 399 (2002). https://doi.org/10.1134/1.1462655

    Article  ADS  Google Scholar 

  7. F. Banhart, Phys. Eng. Sci. 362, 2205 (2004). https://doi.org/10.1098/rsta.2004.1436

    Article  Google Scholar 

  8. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5, 26 (2011). https://doi.org/10.1021/nn102598m

    Article  Google Scholar 

  9. T. Xu, L. Sun. Defects in advanced electronic materials and novel low dimensional structures. 137 (2018). https://doi.org/10.1016/B978-0-08-102053-1.00005-3

  10. F. Banhart, Rep. Prog. Phys. 62, 1181 (1999). https://doi.org/10.1088/0034-4885/62/8/201

    Article  ADS  Google Scholar 

  11. D. Ugarte, Nature 359, 707 (1992). https://doi.org/10.1038/359707a0

    Article  ADS  Google Scholar 

  12. D. Ugarte, Chem. Phys. Lett. 207, 473 (1993). https://doi.org/10.1016/0009-2614(93)89032-D

    Article  ADS  Google Scholar 

  13. D. Ugarte, Carbon 33, 989 (1995). https://doi.org/10.1016/0008-6223(95)00027-B

    Article  Google Scholar 

  14. R.E. Sosa-Ricardo, D. Codorniu-Pujals, M. Márquez-Mijares, Eur. Phys. J. D 72, 1 (2018). https://doi.org/10.1140/epjd/e2018-90101-4

    Article  Google Scholar 

  15. B. Hourahine, B. Aradi, V. Blum et al., J. Chem. Phys. 152, 124101 (2020). https://doi.org/10.1063/1.5143190

    Article  ADS  Google Scholar 

  16. A. Zobelli, V. Ivanovskaya, P. Wagner, Phys. Status Solidi B 249, 276 (2012). https://doi.org/10.1002/pssb.201100630

    Article  ADS  Google Scholar 

  17. I.S. Martinez, M. Monthioux, C.P. Ewels, J. Nanosci. Nanotechnol. 9, 6144 (2009). https://doi.org/10.1166/jnn.2009.1571

    Article  Google Scholar 

  18. M. Gaus, Q. Cui, M. Elstner, J. Chem. Theory Comput. 7, 931 (2011). https://doi.org/10.1021/ct100684s

    Article  Google Scholar 

  19. M. Elstner, D. Porezag, G. Jungnickel, Phys. Rev. B 58, 7260 (1998). https://doi.org/10.1103/PhysRevB.58.7260

    Article  ADS  Google Scholar 

  20. T. Yoshikawa, T. Doi, H. Nakai, Chem. Phys. Lett. 725, 18 (2019). https://doi.org/10.1016/j.cplett.2019.04.001

    Article  ADS  Google Scholar 

  21. H.O. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes (Noyes Publications, Park Ridge, 2012)

    Google Scholar 

  22. R.E. Sosa-Ricardo, Estudio de las Propiedades Geométricas Y Energéticas de Los Fullerenos Y de Su Comportamiento en Los Procesos de Irradiación (Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), University of Havana, 2017). Undergraduate Thesis

  23. R.R. Méndez-Hernández, Estudio de las Propiedades Geométricas Y Energéticas de Nanocebollas Con Defectos de Vacancia en Su Estructura (Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), University of Havana, 2021). Undergraduate Thesis

  24. D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems (Wiley, New Jersey, 2001)

    Book  Google Scholar 

  25. Y. Yang, H. Yu, D. York, Q. Cui, M. Elstner, J. Phys. Chem. A 111, 10861 (2007). https://doi.org/10.1021/jp074167r

    Article  Google Scholar 

  26. A.F. Oliveira, G. Seifert, T. Heine, H.A. Duarte, J. Braz. Chem. Soc. 20, 1193 (2009). https://doi.org/10.1590/S0103-50532009000700002

    Article  Google Scholar 

  27. P. Koskinen, V. Mäkinen, Comput. Mater. Sci. 47, 237 (2009). https://doi.org/10.1016/j.commatsci.2009.07.013

    Article  Google Scholar 

  28. M. Elstner, G. Seifert, Phil. Trans. R. Soc. A 372, 20120483 (2014). https://doi.org/10.1098/rsta.2012.0483

    Article  ADS  Google Scholar 

  29. Q. Cui, M. Elstner, Phys. Chem. Chem. Phys. 16, 14368 (2014). https://doi.org/10.1039/c4cp00908h

    Article  Google Scholar 

  30. J.S. Dewar, E. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985). https://doi.org/10.1021/ja00299a024

    Article  Google Scholar 

  31. A. Cortijo, M.A. Vozmediano, Nucl. Phys. B 763, 293 (2007). https://doi.org/10.1016/j.nuclphysb.2006.10.031

    Article  ADS  Google Scholar 

  32. H. Amara, S. Latil, V. Meunier et al., Phys. Rev. B 76, 115423 (2007). https://doi.org/10.1103/PhysRevB.76.115423

    Article  ADS  Google Scholar 

  33. M.T. Lusk, L.D. Carr, Phys. Rev. Lett. 100, 175503 (2008). https://doi.org/10.1103/PhysRevLett.100.175503

    Article  ADS  Google Scholar 

  34. E. Zaminpayma, M.E. Razavi, P. Nayebi, Appl. Surf. Sci. 414, 101 (2017). https://doi.org/10.1016/j.apsusc.2017.04.065

    Article  ADS  Google Scholar 

  35. A.R. Botello-Méndez, A. Lherbier, J.C. Charlier, Solid State Commun. 175, 90 (2013). https://doi.org/10.1016/j.ssc.2013.08.029

    Article  ADS  Google Scholar 

  36. J. Kang, J. Bang, B. Ryu et al., Phys. Rev. B 77, 115453 (2008). https://doi.org/10.1103/PhysRevB.77.115453

    Article  ADS  Google Scholar 

  37. S. Iijima, J. Cryst. Growth 50, 675 (1980). https://doi.org/10.1016/0022-0248(80)90013-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the funding provided by the PNAP of the InSTEC \(\hbox {NA223LH}\)-INSTEC-003 and would also like to thank Advanced Computational Team at Higher Institute for Technologies and Applied Sciences for the support provided during the realization of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Maykel Márquez Mijares.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez Hernández, R., Codorniu Pujals, D. & Márquez Mijares, M. DFTB study of energetic and structural properties of nano-onions with point defects in their structure. Eur. Phys. J. D 77, 151 (2023). https://doi.org/10.1140/epjd/s10053-023-00729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00729-y

Navigation