Skip to main content

Advertisement

Log in

Experimental and BEf-scaled cross sections for electron-impact excitation of ammonia molecules from near threshold to high-intermediate energy

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Absolute differential and integral cross sections (DCSs and ICSs) for the lowest-lying singlet excitations in ammonia (NH3) molecules have been measured from near threshold to 400 eV using angle-revolved electron energy loss spectroscopy. Normalizing the angular distributions of inelastically scattered electrons to the absolute DCS of He as the reference, the reliable absolute cross sections for the \(\widetilde{A}{}^{1}{A^{\prime\prime}}_{2}\) excitation were obtained in a wider impact energy range. The BEf-scaled ICS was also derived as a function of incident electron energy from the generalized oscillator strengths analysis using the corresponding DCS measured at higher impact energies. The experimental ICS of the singlet excitation in the present study has reasonably reproduced the BEf-scaled ICS in the energy of not only higher impact energies but also near the threshold energy within the experimental uncertainties. The present absolute measurement has suggested that the BEf-scaling law was confirmed to be quite useful to NH3 molecules even towards the threshold energy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The manuscript has no associated data, or the data will not be deposited. [Authors’ comment: Our excitation cross section data are available from the corresponding author on reasonable request.]

References

  1. H. Tanaka, M.J. Brunger, L. Campbell, H. Kato, M. Hoshino, A.R.P. Rau, Rev. Mod. Phys. 88, 025004 (2016)

    ADS  Google Scholar 

  2. Y.-K. Kim, Phys. Rev. A 64, 032713 (2001)

    ADS  Google Scholar 

  3. H. Kato, H. Kawahara, M. Hoshino, H. Tanaka, M.J. Brunger, Y.-K. Kim, J. Chem. Phys. 126, 064307 (2007)

    ADS  Google Scholar 

  4. H. Kato, M. Hoshino, H. Tanaka, P. Limão-Vieira, O. Ingólfsson, L. Campbell, M.J. Brunger, J. Chem. Phys. 134, 134308 (2011)

    ADS  Google Scholar 

  5. M. Nishi, S.-Y. Chen, H. Takeno, T. Mochizuki, H. Takagi, T. Nanba, J. Catal. 413, 623 (2022)

    Google Scholar 

  6. Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Nature 568, 536 (2019)

    ADS  Google Scholar 

  7. K.H.R. Rouwenhorst, Y. Engelmann, K. van’t Verr, R.S. Postma, A. Bogaerts, L. Lefferts, Green Chem. 22, 6258 (2020)

    Google Scholar 

  8. P. Barboun, P. Mehta, F.A. Herrera, D.B. Go, W.F. Schneider, J.C. Hicks, Sustainable. Chem. Eng. 7, 8621 (2019)

    Google Scholar 

  9. P. Limão-Vieira, N.C. Jones, S.V. Hoffmann, D. Duflot, M. Mendes, A.I. Lozano, F. Ferreira da Silva, G. Garcia, M. Hoshino, H. Tanaka, J. Chem. Phys. 151, 184302 (2019)

    ADS  Google Scholar 

  10. E.N. Lassettre, A. Skerbele, M.A. Dillon, K.J. Ross, J. Chem. Phys. 48, 5066 (1968)

    ADS  Google Scholar 

  11. W.R. Harshbarger, A. Skerbele, E.N. Lassettre, J. Chem. Phys. 54, 3784 (1971)

    ADS  Google Scholar 

  12. M. Furlan, M.-J. Hubin-Franskin, J. Delwiche, D. Roy, J.E. Collin, J. Chem. Phys. 82, 1797 (1985)

    ADS  Google Scholar 

  13. G.R. Wight, M.J. Van der Wiel, C.E. Brion, J. Phys. B: At. Mol. Phys. 10, 1863 (1977)

    ADS  Google Scholar 

  14. G.R. Burton, W.F. Chan, G. Cooper, C.E. Brion, Chem. Phys. 177, 217 (1993)

    Google Scholar 

  15. G.R. Burton, W.F. Chan, G. Cooper, C.E. Brion, A. Kumar, W.J. Meath, Can. J. Chem. 71, 341 (1993)

    Google Scholar 

  16. A.C.A. Souza, S.K. Srivastava, J. Braz. Chem. Soc. 7, 91 (1996)

    Google Scholar 

  17. K. Yamamoto, K. Nogami, Y. Hino, Y. Sakai, J. Phys. Conf. Ser. 288, 012013 (2011)

    Google Scholar 

  18. K. Yamamoto, Y. Sakai, J. Phys. B: At. Mol. Opt. Phys. 45, 055201 (2012)

    ADS  Google Scholar 

  19. Y. Itikawa, J. Phys. Chem. Ref. Data 46, 043103 (2017)

    ADS  Google Scholar 

  20. H. Munjal, K.L. Baluja, Phys. Rev. A 74, 032712 (2006)

    ADS  Google Scholar 

  21. D.T. Alle, R.J. Gulley, S.J. Buckman, M.J. Brunger, J. Phys. B: At. Mol. Opt. Phys. 25, 1533 (1992)

    ADS  Google Scholar 

  22. H. Tanaka, L. Boesten, D. Matsunaga, T. Kubo, J. Phys. B: At. Mol. Opt. Phys. 21, 1255 (1988)

    ADS  Google Scholar 

  23. L. Boesten, H. Tanaka, At. Data Nucl. Data Tables 52, 25 (1992)

    ADS  Google Scholar 

  24. S.K. Srivastava, A. Chutjian, S. Trajmar, J. Chem. Phys. 63, 2659 (1975)

    ADS  Google Scholar 

  25. R.T. Brinkmann, S. Trajmar, Rev. Sic. Instrum. 14, 245 (1981)

    ADS  Google Scholar 

  26. J.C. Nickel, P.W. Zetner, G. Shen, S. Trajmar, J. Phys. E: Sci. Instrum. 22, 730 (1989)

    ADS  Google Scholar 

  27. D.C. Cartwright, G. Csanak, S. Trajmar, D.F. Register, Phys. Rev. A 45, 1602 (1992)

    ADS  Google Scholar 

  28. M. Hoshino, H. Kato, D. Suzuki, H. Tanaka, I. Bray, D.V. Furse, S.J. Buckman, O. Ingólfsson, M.J. Brunger, Plasma Sci. Technol. 12, 348 (2010)

    ADS  Google Scholar 

  29. J.N.H. Brunt, G.C. King, F.H. Read, J. Phys. B: At. Mol. Phys. 10, 1289 (1977)

    ADS  Google Scholar 

  30. M. Hoshino, H. Murai, H. Kato, M.J. Brunger, Y. Itikawa, H. Tanaka, J. Chem. Phys. 139, 184301 (2013)

    ADS  Google Scholar 

  31. M. Hoshino, A. Yodo, P. Limão-Vieira, and H. Tanaka, to be submitted.

  32. B.H. Bransden, C.J. Joachain, Physics of atoms and molecules, 2nd edn. (Pearson Education Limited, England, 2003)

    Google Scholar 

  33. L. Vriens, Phys. Rev. 160, 100 (1967)

    ADS  Google Scholar 

  34. Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)

    ADS  Google Scholar 

  35. G.D. Zeiss, W.J. Meath, J.C.F. MacDonald, D.J. Dawson, Can. J. Phys. 55, 2080 (1977)

    ADS  Google Scholar 

  36. E. Tannenbaum, E.M. Coffin, A.J. Harrison, J. Chem. Phys. 21, 311 (1953)

    ADS  Google Scholar 

  37. K. Watanabe, J. Chem. Phys. 22, 1564 (1954)

    ADS  Google Scholar 

  38. B.A. Thompson, P. Harteck, R.R. Reeves Jr., J. Geophys. Res. 68, 6431 (1963)

    ADS  Google Scholar 

  39. M. Suto, L.C. Lee, J. Chem. Phys. 78, 4515 (1983)

    ADS  Google Scholar 

  40. J.A. Syage, R.B. Cohen, J. Steadman, J. Chem. Phys. 97, 6072 (1992)

    ADS  Google Scholar 

  41. J. Berkowitz, Atomic and molecular photoabsorption (Academic Press, UK, 2002), p.237

    Google Scholar 

  42. B. Cheng, H. Lu, H. Chen, M. Bahou, Y. Lee, A.M. Mebel, L.C. Lee, M. Liang, Y.L. Yung, Astrophys. J. 647, 1535 (2006)

    ADS  Google Scholar 

  43. L. Chantranupong, G. Hirsch, R. Buenker, M. Kimura, M.A. Dillon, Chem. Phys. 154, 13 (1991)

    Google Scholar 

Download references

Acknowledgements

Prof. M. J. Brunger was a leader within the electron scattering community to which he has made several relevant contributions. He was a researcher of considerable accomplishment. We are deeply grateful to the late Prof. M. Brunger for the many encouragement discussions under the fruitful collaboration we have kept with him for many years. This work was partly supported by the Grant-in-Aid for Scientific Research (C) (KAKENHI) Grant Number JP19K03812. PLV acknowledges the Portuguese National Funding Agency (FCT) through CEFITEC (UIDB/00068/2020) grant as well as his visiting professor position at Sophia University, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to M. Hoshino.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, M., Yodo, A., Limão-Vieira, P. et al. Experimental and BEf-scaled cross sections for electron-impact excitation of ammonia molecules from near threshold to high-intermediate energy. Eur. Phys. J. D 77, 147 (2023). https://doi.org/10.1140/epjd/s10053-023-00728-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00728-z

Navigation