Skip to main content
Log in

Laser plasma interaction: plasma waves propagation and their instabilities in the inhomogeneous quantum magnetized electron–positron–ion plasma

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, using low frequency and WKB approximations, propagation of electrostatic plasma waves in the presence of a short pulse laser is investigated. The plasma medium is three-component electron–positron–ion inhomogeneous quantum magnetoplasma. Nonuniformity of the initial plasma parameters is in the normal plane. Spatially transverse gradients of the initial number density, streaming velocity, and external magnetic field affect the electrostatic waves directly, in the perpendicular direction. The magnetic field transverse gradient affects parallel waves only through ponderomotive force. In the parallel direction, the magnitude of the ponderomotive force influences the plasma waves directly, and its effect changes in the quantum regime through the quantum modification. The presence of the mentioned transverse gradients can stimulate the electrostatic waves in the stable or unstable modes. The instability rate and also the velocity of the waves depends on the amount of the gradients. This paper gives a good perspective in studying the astronomical plasmas including positrons and also acceleration of plasma particles through ponderomotive force.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: …].

References

  1. H.R. Miller, P.J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987)

    Google Scholar 

  2. F.C. Michel, Theory of Neutron Star Magnetospheres (University of Chicago Press, Chicago, 1991)

    Google Scholar 

  3. S.R. Furlanetto, L. Abraham, Identifying gamma-ray burst remnants through positron annihilation radiation. Astrophys. J. 569(2), L91–L94 (2002)

    ADS  Google Scholar 

  4. R.J. Murphy, G.H. Share, J.G. Skibo, B. Kozlovsky, The physics of positron annihilation in the solar atmosphere. Astrophys. J. 161(2), 495–519 (2005)

    Google Scholar 

  5. P. Martin, J. Vink, S. Jiraskova, P. Jean, R. Diehl, Annihilation emission from young supernova remnants. Astron. Astrophys. 519, A100 (2010)

    ADS  Google Scholar 

  6. G.W. Gibbons, S.W. Hawking, S. Siklos, The Very Early Universe (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  7. A.M. Mirza, A. Hasan, M. Azeem, H. Saleem, Electrostatic instabilities and nonlinear structures of low-frequency waves in nonuniform electron–positron–ion plasmas with shear flow. Phys. Plasmas. 10(12), 4675–4679 (2003)

    ADS  Google Scholar 

  8. S.I. Popel, S.V. Vladimirov, P.K. Shukla, Ion-acoustic solitons in electron–positron–ion plasmas. Phys. Plasmas. 2(3), 716–719 (1995)

    ADS  Google Scholar 

  9. N. Jehan, M. Salahuddin, H. Saleem, A.M. Mirza, Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys. Plasmas. 15(9), 092301 (2008)

    ADS  Google Scholar 

  10. R. Sabry, W.M. Moslem, P.K. Shukla, H. Saleem, Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons. Phys. Rev. E 79(5), 056402 (2009)

    ADS  Google Scholar 

  11. V.I. Berezhiani, D.D. Tskhakaya, P.K. Shukla, Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46(10), 6608–6612 (1992)

    ADS  Google Scholar 

  12. L.H. Cheng, R.A. Tang, A.X. Zhang, J.K. Xue, Nonlinear interaction of intense laser pulses and an inhomogeneous electron-positron-ion plasma. Phys. Rev. E 87(2), 025101 (2013)

    ADS  Google Scholar 

  13. C.M. Surko, M. Leventhal, W.S. Crane, A. Passner, F. Wysocki, T.J. Murphy, J. Strachan, W.L. Rowan, Use of positrons to study transport in tokamak plasmas (invited). Rev. Sci. Instrum. 57(8), 1862 (1986)

    ADS  Google Scholar 

  14. V.I. Berezhiani, D.P. Garuchava, P.K. Shukla, Production of electron–positron pairs by intense laser pulses in an overdense plasma. Phys. Lett. A 360(4–5), 624–628 (2007)

    ADS  Google Scholar 

  15. C.M. Surko, T.J. Murphy, Use of the positron as a plasma particle. Phys. Fluid. B 2(6), 1372 (1990)

    ADS  Google Scholar 

  16. D.C. Lominadze, G.Z. Machabeli, G.I. Melikidze, A.D. Pataraya, Magnetospheric plasma of a pulsar. Sov. J. Plasma Phys. 12, 712–721 (1986)

    ADS  Google Scholar 

  17. V.I. Berezhiani, L.N. Tsintsadze, P.K. Shukla, Influence of electron-positron pairs on the wakefields in plasmas. Phys. Scr. 46(1), 55–56 (1992)

    ADS  Google Scholar 

  18. V.I. Berezhiani, M.Y. El-Ashry, U.A. Mofiz, Theory of strong-electromagnetic-wave propagation in an electron-positron-ion plasma. Phys. Rev. E 50(1), 448–452 (1994)

    ADS  Google Scholar 

  19. M.H. Xu, Y.T. Li, F. Liu, Y. Zhang, X.X. Lin, S.J. Wang, Z.H. Wang, Z.M. Sheng, Z.Y. Wei, J. Zhang, L.M. Meng, Y.J. Li, J. Zheng, Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Phys. Sin. 60(4), 045204 (2011). (in Chinese)

    Google Scholar 

  20. M.Q. He, Q.L. Dong, S.M. Weng, M. Chen, H.C. Wu, Z.M. Sheng, J. Zhang, Ion acceleration by shock wave induced by laser plasma interaction. Acta Phys. Sin. 58(1), 363 (2009). (in Chinese)

    Google Scholar 

  21. Y.T. Li, W.M. Wang, C. Li, Z.M. Sheng, High power terahertz pulses generated in intense laser—plasma interactions. Chin. Phys. B 21(9), 095203 (2012)

    ADS  Google Scholar 

  22. B. Deutsch, H. Furukawa, K. Mima, M. Murakami, K. Nishihara, Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77(12), 2483–2486 (1996)

    ADS  Google Scholar 

  23. S.P. Regan, D.K. Bradley, A.V. Chirokikh, R.S. Craxton, D.D. Meyerhofer, W. Seka, R.W. Short, A. Simon, R.P. Town, B. Yaakobi, J.J. Carill III., R.P. Drake, Laser-plasma interactions in long-scale-length plasmas under direct-drive national ignition facility conditions. Phys. Plasmas. 6(5), 2072–2080 (1999)

    ADS  Google Scholar 

  24. N.H. Burnett, P.B. Corkum, Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6(6), 1195 (1989)

    ADS  Google Scholar 

  25. P. Amendt, D.C. Eder, S.C. Wilks, X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66(20), 2589–2592 (1991)

    ADS  Google Scholar 

  26. B.E. Lemoff, G.Y. Yin, C.L. Gordon III., C.P.J. Barty, S.E. Harris, Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74(9), 1574 (1995)

    ADS  Google Scholar 

  27. P. Sprangle, E. Esary, A. Ting, Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64(17), 2011 (1990)

    ADS  Google Scholar 

  28. H. Lin, L. Ming Chen, J.C. Kiffer, Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E 65(3), 036414 (2002)

    ADS  Google Scholar 

  29. S.Q. Liu, Y. Liu, X.Q. Li, Dynamical behaviour of transverse plasmons in pair plasmas. Chin. Phys. B 20(1), 015203 (2011)

    ADS  Google Scholar 

  30. R.G. Greaves, M.D. Tinkle, C.M. Surko, Creation and uses of positron plasmas. Phys. Plasmas 1(5), 1439–1446 (1994)

    ADS  Google Scholar 

  31. P. Helander, D.J. Ward, Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90(13), 135004 (2003)

    ADS  Google Scholar 

  32. H. Chen, S.C. Wilks, J.D. Bonlie, E.P. Liang, J. Myatt, D.F. Price, D.D. Meyerhofer, P. Beiersdorfer, Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 102(10), 105001 (2009)

    ADS  Google Scholar 

  33. H. Chen, S.C. Wilks, D.D. Meyerhofer, Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys. Rev. Lett. 105, 015003 (2010)

    ADS  Google Scholar 

  34. H. Chen, D.D. Meyerhofer, S.C. Wilks, R. Cauble, F. Dollar, K. Falk, G. Gregori, A. Hazi, E.I. Moses, C.D. Murphy, J. Myatt, J. Park, J. Seely, R. Shepherd, A. Spitkovsky, C. Stoeckl, C.I. Szabo, R. Tommasini, C. Zulick, P. Beiersdorfer, Towards laboratory produced relativistic electron–positron pair plasmas. High Energy Dens. Phys. 7(4), 225–229 (2011)

    ADS  Google Scholar 

  35. V.I. Berezhiani, S.M. Mahajan, Large amplitude localized structures in a relativistic electron-positron ion plasma. Phys. Rev. Lett. 73(8), 1110–1113 (1994)

    ADS  Google Scholar 

  36. A. Sharma, I. Kourakis, P.K. Shukla, Spatiotemporal evolution of high-power relativistic laser pulses in electron-positron-ion plasmas. Phys. Rev. E 82(1), 016402 (2010)

    ADS  Google Scholar 

  37. F.A. Asenjo, F.A. Borotto, A.C.L. Chian, V. Munoz, J.A. Valdivia, E.L. Rempel, Self-modulation of nonlinear waves in a weakly magnetized relativistic electron-positron plasma with temperature. Phys. Rev. E 85(5), 046406 (2012)

    ADS  Google Scholar 

  38. N.L. Tsintsade, J.T. Mendonca, L. Oliveirae Silva, Propagation of relativistically intense laser pulses in nonuniform plasmas. Phys. Rev. E 58, 4890 (1998)

    ADS  Google Scholar 

  39. H.E. Du, A.X. Zhang, R.A. Tang, J.K. Xue, Periodic waves in ultrarelativistic inhomogeneous electron-positron-ion plasma. EPL 103(4), 45001 (2013)

    ADS  Google Scholar 

  40. A. Sharma, I. Kourakis, Relativistic laser pulse compression in plasmas with a linear axial density gradient. Plasma Phys. Control. Fusion 52(6), 065002 (2010)

    ADS  Google Scholar 

  41. J. Fuchs, E. dHumi’eres, Y. Sentoku, P. Antici, S. Atzeni, H. Bandulet, S. Depierreux, C. Labaune, A. Schiavi, Enhanced Propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels. Phys. Rev. Lett. 105, 225001 (2010)

    ADS  Google Scholar 

  42. B.J. Zhou, Z. Huang, M.W. Liu, X.J. Liu, An exact solution to paraxial propagation of laser beams in longitudinal inhomogeneous plasmas. Chin. Phys. B 16(9), 2721–2724 (2007)

    Google Scholar 

  43. V.I. Berezhiani, S.M. Mahajan, Z. Yoshida, M. Ohhashi, Self-trapping of strong electromagnetic beams in relativistic plasmas. Phys. Rev. E 65(4), 047402 (2002)

    ADS  Google Scholar 

  44. E. Boella, Study on Coulomb explosions of ion mixtures. J. Plasma Phys. 82(1), 6000179 (2016)

    Google Scholar 

  45. Ditmire et al., High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997)

    ADS  Google Scholar 

  46. A. D’Angola et al., On the applicability of the standard kinetic theory to the study of nanoplasmas. Phys. Plasmas 21(8), 082116 (2014)

    ADS  Google Scholar 

  47. V. Yakimenko, Advanced Accelarator Concepts: Eleventh Workshop, American Institute of Physics CP737 (2004)

  48. R. Singh, A. Sharma, V.K. Tripathi, Ponderomotive acceleration of electron by a self-focused laser pulse. Phys. Plasmas 17, 123109 (2010)

    ADS  Google Scholar 

  49. C. Li-Hong, Du. Tang Rong-An, X.-K. Hong-E, Dynamics of laser beams in inhomogeneous electron–positron–ion plasmas. Chin. Phys. B 24(7), 075201 (2015)

    ADS  Google Scholar 

  50. Y.-E. Luo, X.-W. Wang, Modulational instability of ultraintense laser pulses in electron-positron-ion plasmas including vacuum polarization effect. Plasma Phys. Control. Fusion 62, 065004 (2020)

    ADS  Google Scholar 

  51. A. Kargarian, Particle energization by high-power laser pulse in a finite-size electron–positron–ion plasma. Laser Phys. 30, 096002 (2020)

    ADS  Google Scholar 

  52. A. Kumar, B.K. Pandey, V.K. Tripathi, Charged particle acceleration by electron Bernstein wave in a plasma channel. Laser Part. Beams 28(3), 409–414 (2010)

    ADS  Google Scholar 

  53. A.J. Gonsalves, K. Nakamura, J. Daniels, H.-S. Mao, C. Benedetti, C.B. Schroeder, Cs. Tóth, J. van Tilborg, D.E. Mittelberger, S.S. Bulanov, J.-L. Vay, C.G.R. Geddes, E. Esarey, W.P. Leemans, Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguidea. Phys. Plasmas 22(5), 056703 (2015)

    ADS  Google Scholar 

  54. D. Giulietti, M. Galimberti, A. Giulietti, L.A. Gizzi, M. Borghesi, P. Balcou, A. Rousse, J.P. Rousseau, High-energy electron beam production by femtosecond laser interactions with exploding-foil plasmas. Phys. Rev. E 64(1), 015402 (2001)

    ADS  Google Scholar 

  55. R. Kodama, P.A. Norreys, K. Mima, A.E. Dangor, R.G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S.J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K.A. Tanaka, Y. Toyama, T. Yamanaka, M. Zepf, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412(6849), 798–802 (2001)

    ADS  Google Scholar 

  56. D.W. Furslund, J.M. Kindel, K. Lee, Theory of hot-electron spectra at high laser intensity. Phys. Rev. Lett. 39(5), 284–288 (1977)

    ADS  Google Scholar 

  57. P.J. Catto, R.M. More, Sheath inverse bremsstrahlung in laser produced plasmas. Phys. Fluids 20(4), 704 (1977)

    ADS  Google Scholar 

  58. F. Brunel, Not-so-resonant, resonant absorption. Rev. Lett. 59(1), 52–55 (1987)

    ADS  Google Scholar 

  59. W.L. Kruer, K. Estabrook, J×B heating by very intense laser light. Phys. Fluids 28(1), 430–432 (1985)

    ADS  Google Scholar 

  60. J.M. Rax, Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high-intensity laser waves. Phys. Fluids 4(12), 3962–3972 (1992)

    Google Scholar 

  61. A.G. Khachatryan, Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield. Phys. Rev. E 65, 046504 (2002)

    ADS  Google Scholar 

  62. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Phys. Rev. Lett. 43, 267–270 (1979)

    ADS  Google Scholar 

  63. R. Singh, A. Sharma, V.K. Tripathi, Ponderomotive acceleration of electron by a self-focused laser pulse. Phys. Plasmas 17, 123109 (2010)

    ADS  Google Scholar 

  64. V. Sazergari, M. Muizale, B. Shokui, Ponderomotive acceleration of electrons in the interaction of arbitrarily-polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102 (2006)

    ADS  Google Scholar 

  65. D. Pines, Classical and quantum plasmas. J. Nucl. Energy C Plasma Phys. 2(1), 5–17 (1961)

    MathSciNet  Google Scholar 

  66. C. L. Gardner, C. Ringhofer, Smooth quantum potential for the hydrodynamic model. Phys. Rev. E 53(1), 157–167 (1996)

    ADS  Google Scholar 

  67. W.M. Moslem, S. Ali, P.K. Shukla, B. Eliason, Three dimensional electrostatic waves in a nonuniform quantum electron-positron magnetoplasma. Phys. Lett. A 372, 3471–3475 (2008)

    ADS  MATH  Google Scholar 

  68. S. Ali Shan, Q. Haque, Low frequency electrostatic nonlinear structures in an inhomogeneous magnetized non-Maxwellian electron–positron–ion plasma. Phys. Lett. A 382(2–3), 99–105 (2018)

    ADS  MathSciNet  Google Scholar 

  69. N. Jehan, M. Salahuddin, H. Saleem, A.M. Mirza, Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys. Plasmas 15, 092301 (2008)

    ADS  Google Scholar 

  70. S. Eliezer, K. Mima, The Interaction of High-Power Lasers with Plasmas, IoP Publishing, Bristol and Philadelphia,69–73 (2002).

  71. P.K. Shukla, N. Shukla, L. Stenflo, Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas. J. Plasma Phys. 76(1), 25–28 (2009)

    ADS  Google Scholar 

  72. N. Shukla, P.K. Shukla, B. Eliasson, L. Stenflo, Magnetization of a quantum plasma by photons. Phys. Lett. A 374(15–16), 1749–1750 (2010)

    ADS  MATH  Google Scholar 

  73. R.J. Goldston, P.H. Rutherford, Introduction to plasma physics, IoP 1995, p. 365. (2020)

  74. M. Djebli, Dense electron-positron pair plasma expansion. Z. Naturforsch 70(10), 875–880 (2015)

    ADS  Google Scholar 

  75. Y. Shi, H. Qin, N.J. Fisch, Laser-plasma interactions in magnetized environment. Phys. Plasmas 25(5), 055706 (2018)

    ADS  Google Scholar 

  76. A. Abdikian, S. Mahmood, Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure. Phys. Plasmas 23(12), 122303 (2016)

    ADS  Google Scholar 

  77. W.F. El-Taibani, W.M. Moslem, M. Wadati, P.K. Shukla, On the instability of electrostatic waves in a nonuniform electron–positron magnetoplasma. Phys. Lett. A 372(22), 4067–4075 (2008)

    ADS  MATH  Google Scholar 

  78. P. Zhang, C.P. Ridgers, A.G.R. Thomas, The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic. New J. Phys. 17(4), 043051 (2015)

    ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to H. Zahed.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, M., Zahed, H. Laser plasma interaction: plasma waves propagation and their instabilities in the inhomogeneous quantum magnetized electron–positron–ion plasma. Eur. Phys. J. D 77, 152 (2023). https://doi.org/10.1140/epjd/s10053-023-00725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00725-2

Navigation