Skip to main content
Log in

On the current-induced domain-wall dynamics

  • Regular Article – Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of a 180\(^{\circ }\) magnetic domain-wall of a flat nanowire driven by an electric current with the adiabatic and non-adiabatic spin-transfer torques using cylindrical coordinates. We establish suitable expressions of some characteristic parameters of the domain-wall dynamics such as the saturation distortion of the magnetization and the critical electric current density, which match with the outcomes of numerical simulations. We discuss the symmetry of these parameters and the domain-wall velocity with respect to the non-adiabatic spin-transfer parameter. In order to solve the equation of motion governing the domain-wall dynamics, we proceed with a method based on the Taylor expansion. This approach allows to avoid the difficulty faced with direct integration of the equation of motion; meanwhile, it leads us to get analytical solutions of the domain-wall motion at different approximation order that match with the corresponding numerical findings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  2. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett. 57, 2442 (1986)

    Article  ADS  Google Scholar 

  3. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 1, 2976435 (2008)

    Google Scholar 

  4. L. Jiang, H. Naganuma, M. Oogane, Y. Ando, Appl. Phys. Express 2, 083002 (2009)

    Article  ADS  Google Scholar 

  5. X. Wang, Y. Chen, H. Xi, D.V. Dimitrov, Electron Device Lett. 30, 294–297 (2009)

    Article  ADS  Google Scholar 

  6. X. Zhang, W. Cai, M. Wang, B. Pan, K. Cao, M. Guo, T. Zhang, H. Cheng, S. Li, D. Zhu et al., Adv. Sci. 8, 202004645 (2021)

  7. X. Wang, Y. Chen, Design, Automation & Test in Europe Conference & Exhibition (2010). https://doi.org/10.1109/date.2010.5457118

  8. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1–L7 (1996)

    Article  ADS  Google Scholar 

  9. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  10. B. Özyilmaz, A.D. Kent, D. Monsma, J.Z. Sun, M.J. Rooks, R.H. Koch, Phys. Rev. Lett. 91, 067203 (2003)

    Article  ADS  Google Scholar 

  11. B. Özyilmaz, A.D. Kent, J.Z. Sun, M.J. Rooks, R.H. Koch, Phys. Rev. Lett. 93, 176604 (2004)

  12. J. Grollier, P. Boulenc, V. Cros, A. Hamzić, A. Vaurés, A. Fert, G. Faini, Appl. Phys. Lett. 83, 509 (2003)

    Article  ADS  Google Scholar 

  13. M. Tsoi, R.E. Fontana, S.S.P. Parkin, Appl. Phys. Lett. 83, 2261 (2003)

    Article  Google Scholar 

  14. M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, Appl. Phys. Lett. 83(1), 105–107 (2003)

    Article  ADS  Google Scholar 

  15. Z. Li, S. Zhang, Phys. Rev. Lett. 92, 207203 (2004)

    Article  ADS  Google Scholar 

  16. Z. Li, S. Zhang, Phys. Rev. B 70, 024417 (2004)

    Article  ADS  Google Scholar 

  17. N. Vernier, D.A. Allwood, D. Atkinson, M.D. Cooke, R.P. Cowburn, Europhys. Lett. 65, 526 (2004)

    Article  ADS  Google Scholar 

  18. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  Google Scholar 

  19. M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, F. Nolting, U. Rüdiger, Phys. Rev. Lett. 94, 106601 (2005)

    Article  ADS  Google Scholar 

  20. M. Kläui, P.-O. Jubert, R. Allenspach, A. Bischof, J.A.C. Bland, G. Faini, U. Rüdiger, C.A.F. Vaz, L. Vila, C. Vouille, Phys. Rev. Lett. 95, 026601 (2005)

    Article  ADS  Google Scholar 

  21. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69(6), 990–996 (2005)

    Article  ADS  Google Scholar 

  22. Z. Li, J. He, S. Zhang, J. Appl. Phys. 99, 08Q702 (2006)

    Article  Google Scholar 

  23. C.H. Marrows, Adv. Phys. 54(8), 585–713 (2007)

    Article  ADS  Google Scholar 

  24. A. Mougin, M. Cormier, J.P. Adam, P.J. Metaxas, J. Ferré, Europhys. Lett. 78, 57007 (2007)

    Article  ADS  Google Scholar 

  25. T.H. Kahan, J. Phys. Radium 5(9), 463–470 (1934)

    Article  Google Scholar 

  26. D.G. Porter, M.J. Donahue, J. Appl. Phys. 95, 6729 (2004)

  27. A. Thiaville, S. Rohart, E. Jué, V. Cros, A. Fert, EPL 100, 57002 (2012)

  28. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

  29. Y. Tserkovnyak, H.J. Skadsem, A. Brataas, G.E.W. Bauer, Phys. Rev. B 74, 144405 (2006)

  30. M.D. Stiles, W.M. Saslow, M.J. Donahue, A. Zangwill, Phys. Rev. B 75, 214423 (2007)

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

P and N conceived this study. MF and P implemented the methods. MF, P and N analyzed the results and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paul André Paglan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megne Foham, M., Paglan, P.A. & Nguenang, J.P. On the current-induced domain-wall dynamics. Eur. Phys. J. D 77, 92 (2023). https://doi.org/10.1140/epjd/s10053-023-00669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00669-7

Navigation