Skip to main content
Log in

Hyperfine structure constants of Lu I and Lu II with Fourier transform spectroscopy

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The hyperfine structure (HFS) constants of 32 levels in Lu I and 10 levels in Lu II were measured by fitting Fourier transform spectra, of which 25 Lu I levels and 4 Lu II levels are reported for the first time to our knowledge. The experimental data obtained in this paper is an extension of the atomic HFS data of Lu element and increase the number of levels with known HFS constants of Lu I and Lu II to 74 and 24 levels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: NSO data was obtained from the digital library of the National Solar Observatory (https://nso.edu/data/historical-archive/) and NIST data from the National Institute of Standards and Technology (https://physics.nist.gov/asd), both of which are data repositories available in the public domain.]

References

  1. R.J. Blackwell-Whitehead, A. Toner, A. Hibbert, J. Webb, S. Ivarsson, Mon. Not. R. Astron. Soc. 364, 705 (2005). https://doi.org/10.1111/j.1365-2966.2005.09597.x

    Article  ADS  Google Scholar 

  2. E.F. Del Peloso, K. Cunha, L. da Silva, G.F. Porto de Mello, Astron. Astrophys. 441, 1149 (2005). https://doi.org/10.1051/0004-6361:20053077

    Article  ADS  Google Scholar 

  3. E. Gomez, S. Aubin, L.A. Orozco, G.D. Sprouse, E. Iskrenova-Tchoukova, M.S. Safronova, Phys. Rev. Lett. 100, 172502 (2008). https://doi.org/10.1103/PhysRevLett.100.172502

    Article  ADS  Google Scholar 

  4. S. Witte, E.J. van Duijn, R. Zinkstok, W. Hogervorst, Eur. Phys. J. D 20, 159 (2002). https://doi.org/10.1140/epjd/e2002-00118-y

    Article  ADS  Google Scholar 

  5. A.A. Poli, D.J. Bord, C.R. Cowley, Publ. Astron. Soc. Pac. 99, 623 (1987). https://doi.org/10.1086/132024

    Article  ADS  Google Scholar 

  6. G.M. Wahlgren, K.E. Nielsen, D.S. Leckrone, Mon. Not. R. Astron. Soc. 500, 2451 (2021). https://doi.org/10.1093/mnras/staa3323

    Article  ADS  Google Scholar 

  7. D.J. Bord, C.R. Cowley, D. Mirijanian, Sol. Phys. 178, 221 (1998). https://doi.org/10.1023/a:1004901023385

    Article  ADS  Google Scholar 

  8. C. Sneden, J.E. Lawler, J.J. Cowan, I.I. Ivans, E.A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 80 (2009). https://doi.org/10.1088/0067-0049/182/1/80

    Article  ADS  Google Scholar 

  9. A. Steudel, Z. Physik 152, 599 (1958). https://doi.org/10.1007/BF01375217

    Article  ADS  Google Scholar 

  10. J. Blaise, J. Bauche, S. Gerstenkorn, F.S. Tomkins, J. Phys. Radium 22, 417 (1961). https://doi.org/10.1051/jphysrad:01961002207041700

    Article  Google Scholar 

  11. G.J. Ritter, Phys. Rev. 126, 240 (1962). https://doi.org/10.1103/PhysRev.126.240

    Article  ADS  Google Scholar 

  12. H. Figger, G. Wolber, S. Penselin, Phys. Lett. A 34, 21 (1971). https://doi.org/10.1016/0375-9601(71)90977-7

    Article  ADS  Google Scholar 

  13. H. Figge, G. Wolber, Z. Physik 264, 95 (1973). https://doi.org/10.1007/BF01398935

    Article  ADS  Google Scholar 

  14. T. Brenner, S. Büttgenbach, W. Rupprecht, F. Träber, Nucl. Phys. A 440, 407 (1985). https://doi.org/10.1016/0375-9474(85)90237-4

    Article  ADS  Google Scholar 

  15. L.H. Göbel, Z. Naturforsch A 25, 611 (1970). https://doi.org/10.1515/zna-1970-0507

    Article  ADS  Google Scholar 

  16. J.F. Wyart, Phys. Scr. 18, 87 (1978). https://doi.org/10.1088/0031-8949/18/2/004

    Article  ADS  Google Scholar 

  17. J. Vergès, J.F. Wyart, Phys. Scr. 17, 495 (1978). https://doi.org/10.1088/0031-8949/17/5/004

    Article  ADS  Google Scholar 

  18. A. Nunnemann, D. Zimmermann, P. Zimmermann, Z. Physik A 290, 123 (1979). https://doi.org/10.1007/BF01408105

    Article  ADS  Google Scholar 

  19. D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, Z. Physik A 295, 307 (1980). https://doi.org/10.1007/BF01412940

    Article  ADS  Google Scholar 

  20. A. Kuhnert, A. Nunnemann, D. Zimmermann, J. Phys. B: At. Mol. Phys. 16, 4299 (1983). https://doi.org/10.1088/0022-3700/16/23/013

    Article  ADS  Google Scholar 

  21. M.N. Reddy, G.N. Rao, J. Opt. Soc. Am. B 6, 1481 (1989). https://doi.org/10.1364/JOSAB.6.001481

    Article  ADS  Google Scholar 

  22. U. Georg, W. Borchers, M. Keim, A. Klein, P. Lievens, R. Neugart, M. Neuroth P. M. Rao, Ch. Schulz, ISOLDE Collaboration, Eur. Phys. J. A 3, 225 (1998). https://doi.org/10.1007/s100500050172

  23. Y.P. Gangrskiĭ, S.G. Zemlyanoi, D.V. Karaivanov, N.N. Kolesnikov, K.P. Marinova, B.N. Markov, V.S. Rostovskii, Opt. Spectrosc. 92, 658 (2002). https://doi.org/10.1134/1.1481127

    Article  ADS  Google Scholar 

  24. A.B. D’yachkov, A.A. Gorkunov, A.V. Labozin, S.M. Mironov, G.O. Tsvetkov, VYa. Panchenko, V.A. Firsov, Opt. Spectrosc. 125, 839 (2018). https://doi.org/10.1134/S0030400X19020127

    Article  ADS  Google Scholar 

  25. A.B. D’yachkov, V.A. Firsov, A.A. Gorkunov, A.V. Labozin, S.M. Mironov, V.Y. Panchenko, A.N. Semenov, G.G. Shatalova, G.O. Tsvetkov, Appl. Phys. B 121, 425 (2015). https://doi.org/10.1007/s00340-015-6248-0

    Article  ADS  Google Scholar 

  26. C. Sneden, J.J. Cowan, J.E. Lawler, I.I. Ivans, S. Burles, T.C. Beers, F. Primas, V. Hill, J.W. Truran, G.M. Fuller, B. Pfeiffer, K.L. Kratz, Astrophys. J. 591, 936 (2003). https://doi.org/10.1086/375491

    Article  ADS  Google Scholar 

  27. E.A. Den Hartog, J.J. Curry, M.E. Wickliffe, J.E. Lawler, Sol. Phys. 178, 239 (1998). https://doi.org/10.1023/A:1005088315480

    Article  ADS  Google Scholar 

  28. E.A. Den Hartog, J.E. Lawler, I.U. Roederer, Astrophys. J. Suppl. Ser. 248, 10 (2020). https://doi.org/10.3847/1538-4365/ab84f5

    Article  ADS  Google Scholar 

  29. G.M. Wahlgren, Can. J. Phys. 89, 345 (2011). https://doi.org/10.1139/p10-125

    Article  ADS  Google Scholar 

  30. S.P. Davis, M.C. Abrams, J.W. Brault, Fourier Transform Spectrometry (Elsevier, 2001), p.6

    Google Scholar 

  31. G.K. Woodgate, Elementary Atomic Structure, 2nd edn. (Clarendon Press, Oxford, 1980), p.184

    Google Scholar 

  32. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, 1997)

    MATH  Google Scholar 

  33. A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2022, December 4]. National Institute of Standards and Technology, Gaithersburg, MD. https://doi.org/10.18434/T4W30F

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U1832114) and, the Science and Technology Development Planning Project of Jilin Province (Grant No. 20220101007JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Zhenwen Dai.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Ma, H., Wang, T. et al. Hyperfine structure constants of Lu I and Lu II with Fourier transform spectroscopy. Eur. Phys. J. D 77, 74 (2023). https://doi.org/10.1140/epjd/s10053-023-00656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00656-y

Navigation