Skip to main content
Log in

Enhanced entanglement in the hybrid optomechanical system assisted by the nitrogen-vacancy center ensemble in diamond

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We theoretically present a scheme for enhancing the entanglement between the two mechanical resonators in a hybrid optomechanical system which is consisted of two mechanical resonators coupled via Coulomb field, two cavities and a nitrogen-vacancy (NV) center ensemble inside the left cavity. We demonstrate that the enhancement of mechanical entanglement is strongly manipulated by the Coulomb coupling strength. Our result also shows that the collective spin coupling strength plays an important role in attaining the reinforced mechanical entanglement. Moreover, the mechanical entanglement can be increased by properly selecting the optomechanical coupling strength and other system parameters. Further, it is found that the steady-state entanglement of the hybrid system can be obtained easily in a large range of parameters. Our work provides broad potential applications in the investigation of quantum information processing and the preparation of quantum devices.

Graphical abstract

Quantum entanglement, cavity optomechanics, NV center ensemble, Coulomb coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: The manuscript has no data associated with it].

References

  1. J.C. Boileau et al., Robust quantum communication using a polarization-entangled photon pair. Phys. Rev. Lett 93, 220501 (2004)

    ADS  Google Scholar 

  2. X. Lu et al., Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019)

    Google Scholar 

  3. R. Heilmann et al., A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96–100 (2015)

    Google Scholar 

  4. S. Kiesewetter et al., Pulsed entanglement of two optomechanical oscillators and Furry’s hypothesis. Phys. Rev. Lett. 119, 023601 (2017)

    ADS  Google Scholar 

  5. X.S. Ma et al., Quantum teleportation over 143 kilometres using active feed-forward. Nat. 489, 269–273 (2012)

    ADS  Google Scholar 

  6. M. Riebe et al., Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    ADS  Google Scholar 

  7. A.K. Ekert, Quantum cryptography and bell’s theorem (Springer, Boston, MA, 1992)

    MATH  Google Scholar 

  8. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  9. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  Google Scholar 

  10. H.M. Li et al., Measurement-induced nonclassical state from two-mode squeezed vacuum states via beam splitter and its entanglement properties. Laser Phys. Lett. 16, 105202 (2019)

    ADS  Google Scholar 

  11. H.C. Yuan et al., Quantifying micro–macro entanglement of a single-photon entangled state by virtue of Wigner function method. Modern Phys. Lett. A 30, 1550109 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Q. Liao, G. He, Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane. Quantum Inf. Proc. 19, 1–15 (2019)

    MathSciNet  Google Scholar 

  13. Z.J. Ke et al., Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness. Chinese Phys. B 29, 080301 (2020)

    ADS  Google Scholar 

  14. C. Joshi et al., Entanglement of distant optomechanical systems. Phys. Rev. A 85, 033805 (2012)

    ADS  Google Scholar 

  15. M. Wang et al., Macroscopic quantum entanglement in modulated optomechanics. Phys. Rev. A 94, 053807 (2016)

    ADS  Google Scholar 

  16. F.X. Sun et al., Phase control of entanglement and quantum steering in a three-mode optomechanical system. New J. Phys. 19, 123039 (2017)

    ADS  Google Scholar 

  17. A. Sohail et al., Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Inf. Proc. 19, 1–18 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  18. X. Xiao et al., Tunable optical second-order sideband effects in a parity-time symmetric optomechanical system. Sci. China Phys. Mech. Astron. 63, 1–8 (2020)

    Google Scholar 

  19. P. Meystre, A short walk through quantum optomechanics. Ann. Der Physik. 525, 215–233 (2013)

    ADS  MATH  Google Scholar 

  20. R. Ghobadi, A.R. Bahrampour, C. Simon, Quantum optomechanics in the bistable regime. Phys. Rev. A 84, 033846 (2011)

    ADS  Google Scholar 

  21. M. Bhattacharya, P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state. Phys. Rev. Lett. 99, 073601 (2007)

    ADS  Google Scholar 

  22. Z. Yin, T. Li, M. Feng, Three-dimensional cooling and detection of a nanosphere with a single cavity. Phys. Rev. A 83, 013816 (2011)

    ADS  Google Scholar 

  23. Z. Xu, T. Li, Detecting Casimir torque with an optically levitated nanorod. Phys. Rev. A 96, 033843 (2017)

    ADS  Google Scholar 

  24. Q.H. Liao et al., Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28, 5288–5305 (2020)

    ADS  Google Scholar 

  25. S. Weis et al., Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    ADS  Google Scholar 

  26. I. Wilson-Rae et al., Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    ADS  Google Scholar 

  27. W. Zeng et al., Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble. Sci. Rep. 7, 1–10 (2017)

    ADS  Google Scholar 

  28. A. Pontin et al., Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system. Phys. Rev. Lett. 116, 103601 (2016)

    ADS  Google Scholar 

  29. K. Børkje et al., Observability of radiation-pressure shot noise in optomechanical systems. Phys. Rev. A 82, 013818 (2010)

    ADS  Google Scholar 

  30. T. Bagci et al., Optical detection of radio waves through a nanomechanical transducer. Nature 507, 81–85 (2014)

    ADS  Google Scholar 

  31. S. Forstner et al., Ultrasensitive optomechanical magnetometry. Adv. Mater. 26, 6348–6353 (2014)

    Google Scholar 

  32. S. Huang, G.S. Agarwal, Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)

    ADS  Google Scholar 

  33. R.W. Andrews et al., Bidirectional and efficient conversion between microwave and optical light. Nature Phys. 10, 321–326 (2014)

    ADS  Google Scholar 

  34. A. Bassi et al., Models of wave-function collapse, underlying theories, and experimental tests. Rev. Modern Phys. 85, 471 (2013)

    ADS  Google Scholar 

  35. D. Vitali et al., Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  36. M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    ADS  Google Scholar 

  37. Y.D. Wang, A.A. Clerk, Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    ADS  Google Scholar 

  38. G. De Chiara, M. Paternostro, G.M. Palma, Entanglement detection in hybrid optomechanical systems. Phys. Rev. A 83, 052324 (2011)

    ADS  Google Scholar 

  39. B. Rogers et al., Entanglement control in hybrid optomechanical systems. Phys. Rev. A 86, 042323 (2012)

    ADS  Google Scholar 

  40. H. Levine et al., High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett. 121, 123603 (2018)

    ADS  Google Scholar 

  41. K. Stannigel et al., Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    ADS  Google Scholar 

  42. T.D. Ladd et al., Quantum computers. Nature 464, 45–53 (2010)

    ADS  Google Scholar 

  43. F. Dolde et al., Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013)

    ADS  Google Scholar 

  44. M.W. Doherty et al., The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013)

    ADS  Google Scholar 

  45. R. Schirhagl et al., Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)

    ADS  Google Scholar 

  46. V.M. Acosta et al., Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications. Phys. Rev. B 80, 115202 (2009)

    ADS  Google Scholar 

  47. L. Thiel et al., Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019)

    ADS  Google Scholar 

  48. G. Balasubramanian et al., Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    ADS  Google Scholar 

  49. J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    ADS  Google Scholar 

  50. G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered diamond. Nature Mat. 8, 383–387 (2009)

    ADS  Google Scholar 

  51. I. Aharonovich et al., Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009)

    ADS  Google Scholar 

  52. E. Togan et al., Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    ADS  Google Scholar 

  53. W.J. Su, Z.B. Yang, Z.R. Zhong, Arbitrary control of entanglement between two nitrogen-vacancy-center ensembles coupling to a superconducting-circuit qubit. Phys. Rev. A 97, 012329 (2018)

    ADS  Google Scholar 

  54. D. Marcos et al., Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 105, 210501 (2010)

    ADS  Google Scholar 

  55. T. Hümmer et al., Nonequilibrium phases in hybrid arrays with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 85, 052320 (2012)

    ADS  Google Scholar 

  56. L.J. Zou et al., Implementation of the Dicke lattice model in hybrid quantum system arrays. Phys. Rev. Lett. 113, 023603 (2014)

    ADS  Google Scholar 

  57. T. Liu et al., One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications. Opt. Express 26, 4498–4511 (2018)

    ADS  Google Scholar 

  58. S. Ma et al., Two-mode squeezed states of two separated nitrogen-vacancy-center ensembles coupled via dissipative photons of superconducting resonators. Phys. Rev. A 99, 012325 (2019)

    ADS  Google Scholar 

  59. Y. Kubo et al., Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys. Rev. Lett. 107, 220501 (2011)

    ADS  Google Scholar 

  60. S. Saito et al., Towards realizing a quantum memory for a superconducting qubit: Storage and retrieval of quantum states. Phys. Rev. Lett. 111, 107008 (2013)

    ADS  Google Scholar 

  61. B. Li et al., Quantum microwave-optical interface with nitrogen-vacancy centers in diamond. Phys. Rev. A 96, 032342 (2017)

    ADS  Google Scholar 

  62. Z. Chen et al., Dissipative quantum phase transition in a biased Tavis-Cummings model. Chinese Phys. B 29, 044201 (2020)

    ADS  Google Scholar 

  63. T. Liu et al., One-step implementation of a coherent conversion between microwave and optical cavities via an ensemble of nitrogen-vacancy centers. Phys. Rev. A 103, 023706 (2021)

    ADS  Google Scholar 

  64. U. Löw et al., Study of an Ising model with competing long-and short-range interactions. Phys. Rev. Lett. 72, 1918 (1994)

    ADS  Google Scholar 

  65. R.X. Chen, L.T. Shen, S.B. Zheng, Dissipation-induced optomechanical entanglement with the assistance of Coulomb interaction. Phys. Rev. A 91, 022326 (2015)

    ADS  Google Scholar 

  66. J. Xu, T. Liu, Transfer of arbitrary quantum states between separated superconducting cavities via an ensemble of nitrogen-vacancy centers. Results Phys. 44, 106157 (2023)

    Google Scholar 

  67. M.J.A. Schütz, Universal quantum transducers based on surface acoustic waves. Quantum Dots Quantum Inform. Proc. Controll. Exploit. Quantum Dot Environ. p. 143-196 (2017)

  68. T. Holstein, H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    ADS  MATH  Google Scholar 

  69. V. Giovannetti, D. Vitali, Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, 023812 (2001)

    ADS  Google Scholar 

  70. A. Jackson, J. Mavoori, E.E. Fetz, Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 (2006)

    ADS  Google Scholar 

  71. X.Y. Lü et al., Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Phys. Rev. A 91, 013834 (2015)

    ADS  Google Scholar 

  72. T.A. Palomaki et al., Entangling mechanical motion with microwave fields. Science 342, 710–713 (2013)

    ADS  Google Scholar 

  73. W. Xiong et al., Strong long-range spin-spin coupling via a Kerr magnon interface. Phys. Rev. B 105, 245310 (2022)

    ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 62061028), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology (Grant No. ammt2021A-4), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF202010), the Interdisciplinary Innovation Fund of Nanchang University (Grant No. 9166-27060003-YB12), and the Open Research Fund Program of Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education (Grant No. OEIAM202004).

Author information

Authors and Affiliations

Authors

Contributions

QL: Supervision, Conceptualization, Methodology, Writing—Reviewing and Editing. RL: Writing—Original draft preparation, Data curation. QZ: Visualization, Investigation. ZZ: Validation.

Corresponding authors

Correspondence to Qinghong Liao or Qingmin Zhao.

Ethics declarations

Conflict of interest

The authors certify that they have no competing financial interests or personal relationship.

Consent for publication

If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liao, Q., Zhao, Q. et al. Enhanced entanglement in the hybrid optomechanical system assisted by the nitrogen-vacancy center ensemble in diamond. Eur. Phys. J. D 77, 84 (2023). https://doi.org/10.1140/epjd/s10053-023-00654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00654-0

Navigation