Skip to main content
Log in

On the importance of using realistic partition functions in kilonova opacity calculations

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In the present work, we report an investigation on the importance of using realistic partition functions in the opacity calculations of lanthanide ions whether they are moderately or lowly ionized. In order to do this, atomic data for various moderately charged samarium (Sm V–XI) and lowly charged neodymium (Nd II–IV) ions were calculated by the pseudo-relativistic Hartree–Fock method (HFR) and then, used to compute the expansion opacities for conditions characterizing the ejecta of kilonovae observed as a result of neutron star mergers, with a particular attention given to the partition function computations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The aim of the present work being to investigate and discuss the impact of the use of realistic partition functions on opacities, the very numerous atomic parameters obtained in our calculations are not tabulated in this paper. These are available on request from the authors.]

References

  1. B.P. Abbott et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(18), 161101 (2017)

    Article  ADS  Google Scholar 

  2. D. Kasen, B. Metzger, J. Barnes, E. Quataert, E. Ramirez-Ruiz, Nature 551, 80–84 (2017)

    Article  ADS  Google Scholar 

  3. O. Just, I. Kullmann, S. Goriely, A. Bauswein, H.-T. Janka, C.E. Collins, MNRAS 510, 2820–2840 (2022)

    Article  ADS  Google Scholar 

  4. M. Tanaka et al., ApJ 852, 109 (2018)

    Article  ADS  Google Scholar 

  5. G. Gaigalas, D. Kato, P. Rynkun, L. Radziute, M. Tanaka, ApJS 240, 29 (2019)

    Article  ADS  Google Scholar 

  6. G. Gaigalas, P. Rynkun, L. Radziute, D. Kato, M. Tanaka, P. Jönsson, ApJS 248, 13 (2020)

    Article  ADS  Google Scholar 

  7. L. Radziute, G. Gaigalas, D. Kato, P. Rynkun, M. Tanaka, ApJS 248, 17 (2020)

    Article  ADS  Google Scholar 

  8. H. Carvajal Gallego, P. Palmeri, P. Quinet, MNRAS 501, 1440 (2021)

    Article  ADS  Google Scholar 

  9. M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi, MNRAS 496, 1369 (2020)

    Article  ADS  Google Scholar 

  10. C.J. Fontes, C.L. Fryer, A.L. Hungerford, R.T. Wollaeger, O. Korobkin, MNRAS 493, 4143 (2020)

    Article  ADS  Google Scholar 

  11. H. Carvajal Gallego, J.C. Berengut, P. Palmeri, P. Quinet, MNRAS 509, 6138 (2022)

    Article  ADS  Google Scholar 

  12. H. Carvajal Gallego, J.C. Berengut, P. Palmeri, P. Quinet, MNRAS 513, 2302 (2022)

    Article  ADS  Google Scholar 

  13. H. Carvajal Gallego, J. Deprince, J.C. Berengut, P. Palmeri, P. Quinet, MNRAS 518, 332–352 (2023)

    Article  ADS  Google Scholar 

  14. S. Banerjee, M. Tanaka, D. Kato, G. Gaigalas, K. Kawaguchi, N. Domoto, ApJ 934, 117 (2022)

    Article  ADS  Google Scholar 

  15. R.D. Cowan, The Theory of Atomic Structure and Spectra (California University Press, Berkeley, 1981)

    Book  Google Scholar 

  16. A. Flörs, R.F. Silva, J. Deprince, H. Carvajal Gallego, G. Leck, G. Martinez-Pinedo, J.M. Sampaio, B. Amaro, J.P. Marques, S. Goriely, P. Quinet, P. Palmeri, M. Godefroid. arXiv:2302.01780 [astro-ph.HE]

  17. H. Karp, G. Lasher, K.L. Chan, E.E. Salpeter, ApJ 214, 161 (1977)

    Article  ADS  Google Scholar 

  18. R.G. Eastman, P.A. Pinto, ApJ 412, 731 (1993)

    Article  ADS  Google Scholar 

  19. D. Kasen, R.C. Thomas, P. Nugent, ApJ 651, 366 (2006)

    Article  ADS  Google Scholar 

  20. V.V. Sobolev, Moving Envelopes of Stars (Harvard University Press, Cambridge, 1960)

    Book  Google Scholar 

  21. S. Banerjee, M. Tanaka, K. Kawaguchi, D. Kato, G. Gaigalas, Apj 901, 29 (2020)

    Article  ADS  Google Scholar 

  22. A. Kramida, Yu. Ralchenko, J. Reader, NIST ASD Team, 2020, NIST Atomic Spectra Database (ver.5.7.1.). https://physics.nist.gov/asd

Download references

Acknowledgements

HCG is a holder of a FRIA fellowship, while PP and PQ are, respectively, Research Associate and Research Director of the Belgian Fund for Scientific Research F.R.S.-FNRS. JD has received funding from the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme (Nos. O.0004.22 and O022818F). Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the F.R.S. -FNRS under Grant No. 2.5020.11 and by the Walloon Region of Belgium.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Helena Carvajal Gallego.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvajal Gallego, H., Deprince, J., Godefroid, M. et al. On the importance of using realistic partition functions in kilonova opacity calculations. Eur. Phys. J. D 77, 72 (2023). https://doi.org/10.1140/epjd/s10053-023-00638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00638-0

Navigation