Skip to main content
Log in

Multifunctional nylon filaments for simultaneous ultra-violet light and strain sensing

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Webbings are critical load-bearing components that are frequently exposed to severe environments. To date, sensing techniques for applied strain and ultra-violet (UV) irradiation on webbings are still lacking. Here, we put forward a class of multifunctional filaments to bridge this technical gap. Multifunctional filaments are fabricated by attaching functional materials to the filaments’ surfaces through a pressurized coating process. UV-sensitivity is accomplished by a layer of photochromic materials coated on the filament. Upon UV irradiation, the photochromic filaments demonstrate a rich color variation that could support UV sensing. The optical responses of the photochromic filaments are elucidated by a mathematical model based on the photochemistry of the underlying chemical reactions. Strain-sensitivity is realized by a layer of photonic crystals coated on the filament. An applied strain modulates the closely packed nano-structures of the photonic crystals, leading to a shift in the filament color. We demonstrate that by incorporating photochromic materials and photonic crystals on the same filament, it is possible to accomplish simultaneous UV and strain sensing. The proposed filaments could be embedded in webbings to enable noninvasive monitoring of their integrity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited.[Authors’ comment: The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. A. Prichard, Three-dimensional textiles in the aerospace industry, in Advances in 3D textiles. ed. by X. Chen (Woodhead Publishing, Cambridge, UK, 2015), pp.293–304. https://doi.org/10.1016/B978-1-78242-214-3.00011-5

    Chapter  Google Scholar 

  2. T.C. Jones, Structural certification of human-rated inflatable space structures. In: 2018 IEEE Aerospace Conference, pp. 1–13 (2018). https://doi.org/10.1109/AERO.2018.8396616

  3. F. Larsson, The effect of ultraviolet light on mechanical properties of Kevlar 49 composites. J. Reinforced Plastics Compos. 5(1), 19–22 (1986). https://doi.org/10.1177/073168448600500103

    Article  ADS  Google Scholar 

  4. D. Carr, G. Starling, T. de Wilton, I. Horsfall, Tensile properties of military chin-strap webbing. Textile Res. J. 84(6), 655–661 (2014). https://doi.org/10.1177/0040517513499436

    Article  Google Scholar 

  5. S. Kenner, Long term displacement data of woven fabric webbings under constant load for inflatable structures, p. 0352 (2014). https://doi.org/10.2514/6.2014-0352

  6. A. Logan, Time-dependent environmental degradation of polymeric fabrics. PhD thesis (2015)

  7. P. Zhang, S. Carrillo Segura, A. Boldini, P. Di Trolio, O.J. Ohanian, M. Porfiri, A photochromic nylon webbing for ultra-violet light sensing. Smart Mater. Struct. 30, 085015 (2021). https://doi.org/10.1088/1361-665x/ac093c

    Article  ADS  Google Scholar 

  8. P. Zhang, O.J. Ohanian, M. Porfiri, Spiropyran-functionalized photochromic nylon webbings for long-term ultraviolet light sensing. J. Appl. Phys. 132(6), 064504 (2022). https://doi.org/10.1063/5.0093641

    Article  ADS  Google Scholar 

  9. S.L. Marasso, M. Cocuzza, V. Bertana, F. Perrucci, A. Tommasi, S. Ferrero, L. Scaltrito, C.F. Pirri, PLA conductive filament for 3D printed smart sensing applications. Rapid Prototyp J. 5, 8 (2018). https://doi.org/10.1108/RPJ-09-2016-0150

    Article  Google Scholar 

  10. G. Zhou, J.-H. Byun, Y. Oh, B.-M. Jung, H.-J. Cha, D.-G. Seong, M.-K. Um, S. Hyun, T.-W. Chou, Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon nanotube/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9(5), 4788–4797 (2017). https://doi.org/10.1021/acsami.6b12448

    Article  Google Scholar 

  11. G. Jin, J. Norrish, C. Too, G. Wallace, Polypyrrole filament sensors for gases and vapours. Curr. Appl. Phys. 4(2), 366–369 (2004). https://doi.org/10.1016/j.cap.2003.11.050

    Article  Google Scholar 

  12. U.C. Paek, Free drawing and polymer coating of silica glass optical fibers. J. Heat Transfer 121(4), 774–788 (1999). https://doi.org/10.1115/1.2826066

    Article  Google Scholar 

  13. G.H. Brown, Techniques of chemistry, vol photochromism (Wiley-Interscience, New York, 1971)

    Google Scholar 

  14. E. Fischer, Y. Hirshberg, Formation of coloured forms of spirans by low-temperature irradiation. J. Chem. Soc. 87, 4522–4524 (1952)

    Google Scholar 

  15. R. Klajn, Spiropyran-based dynamic materials. Chem. Soc. Rev. 43(1), 148–184 (2014). https://doi.org/10.1039/C3CS60181A

    Article  Google Scholar 

  16. L. Kortekaas, W.R. Browne, The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem. Soc. Rev. 48, 3406–3424 (2019). https://doi.org/10.1039/C9CS00203K

    Article  Google Scholar 

  17. T. Yoshida, A. Morinaka, Decomposition process of the photochromic compound spiro[1,3,3-trimethylindoline-6’-hydroxy benopyran] in the solid state under UV irradiation. J. Photochem. Photobiol. A: Chem. 63(2), 227–234 (1992). https://doi.org/10.1016/1010-6030(92)85140-P

    Article  Google Scholar 

  18. C. Paquet, E. Kumacheva, Nanostructured polymers for photonics. Mater. Today 11(4), 48–56 (2008). https://doi.org/10.1016/S1369-7021(08)70056-7

    Article  Google Scholar 

  19. J. Yu, C.-W. Kan, Review on fabrication of structurally colored fibers by electrospinning. Fibers 6, 70 (2018). https://doi.org/10.3390/fib6040070

    Article  Google Scholar 

  20. X. Sun, J. Zhang, X. Lu, X. Fang, H. Peng, Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angewandte Chem. 127(12), 3701–3705 (2015). https://doi.org/10.1002/ange.201412475

    Article  ADS  Google Scholar 

  21. J. Zhang, S. He, L. Liu, G. Guan, X. Lu, X. Sun, H. Peng, The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C 4(11), 2127–2133 (2016). https://doi.org/10.1039/C5TC04073F

    Article  Google Scholar 

  22. W. Yuan, Q. Li, N. Zhou, S. Zhang, C. Ding, L. Shi, K.-Q. Zhang, Structural color fibers directly drawn from colloidal suspensions with controllable optical properties. ACS Appl. Mater. Interfaces 11(21), 19388–19396 (2019). https://doi.org/10.1021/acsami.8b21070

    Article  Google Scholar 

  23. W. Yuan, K.-Q. Zhang, Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles. Langmuir 28(43), 15418–15424 (2012). https://doi.org/10.1021/la303312q

    Article  Google Scholar 

  24. B. You, N. Wen, L. Shi, L. Wu, J. Zi, Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties. J. Mater. Chem. 19(22), 3594–3597 (2009). https://doi.org/10.1039/B906293A

    Article  Google Scholar 

  25. D.F. Swinehart, The Beer-Lambert law. J. Chem. Educ. 39(7), 333 (1962)

    Article  Google Scholar 

  26. M. Sakuragi, K. Aoki, T. Tamaki, K. Ichimura, The role of triplet state of nitrospiropyran in their photochromic reaction. Bull. Chem. Soc. Japan 63(1), 74–79 (1990). https://doi.org/10.1246/bcsj.63.74

    Article  Google Scholar 

  27. J. Whelan, D. Abdallah, K. Piskorz, J.T. Wojtyk, J.M. Dust, J.-M. Nunzi, S. Hoz, E. Buncel, Photochemical and thermal spiropyran (SP)-merocyanine (MC) interconversion: a dichotomy in dependence on viscosity. Phys. Chem. Chem. Phys. 14(39), 13684–13691 (2012). https://doi.org/10.1039/C2CP42259J

    Article  Google Scholar 

  28. J.T.C. Wojtyk, A. Wasey, P.M. Kazmaier, S. Hoz, E. Buncel, Thermal reversion mechanism of N-functionalized merocyanines to spiropyrans: a solvatochromic, solvatokinetic, and semiempirical study. J. Phys. Chem. A 104(39), 9046–9055 (2000). https://doi.org/10.1021/jp001533x

    Article  Google Scholar 

  29. E.A. Jares-Eruman, L. Song, T.M. Jovin, Photochromism-fret (phFRET): modulation of fluorescence resonance energy transfer by a photochromic acceptor. Molecular Crystals and Liquid Crystals Science and Technology. Sect. A. Mol. Crystals and Liquid Crystals 298(1), 151–159 (1997). https://doi.org/10.1080/10587259708036155

    Article  Google Scholar 

  30. American Chemical Society: UV and visible absorption spectrum detail. data retrieved from SciFinder, Spectrum ID UY_01586, https://scifinder-n.cas.org/ (2022)

  31. The Q-Panel Company: QUV accelerated weathering tester operating manual (1992)

  32. A.Y. Tolbin, V.E. Pushkarev, L.G. Tomilova, N.S. Zefirov, Threshold concentration in the nonlinear absorbance law. Phys. Chem. Chem. Phys. 19(20), 12953–12958 (2017). https://doi.org/10.1039/C7CP01514C

    Article  Google Scholar 

  33. J.W.S. Hearle, One-dimensional textiles: rope, cord, twine, webbing, and nets. In: Horrocks, A.R., Anand, S.C. (eds.) Handbook of Technical Textiles, Second edition edn. Woodhead Publishing Series in Textiles, pp. 345–360. Woodhead Publishing, Cambridge, UK (2016). https://doi.org/10.1016/B978-1-78242-458-1.00011-X

  34. G.H. Lee, T.M. Choi, B. Kim, S.H. Han, J.M. Lee, S.-H. Kim, Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11(11), 11350–11357 (2017). https://doi.org/10.1021/acsnano.7b05885

Download references

Acknowledgements

This work was supported by the U.S. Navy through Contract No. N68936-21-C-0021. The authors thank Mr. Yichen Guo for his help conducting some experimental trials.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PZ, OJOIII, MP; Methodology: PZ, OJOIII, MP; Formal analysis and investigation: PZ, NU, AB, OJOIII, MP; Writing - original draft preparation: PZ; Writing - review and editing: PZ, NU, AB, OJOIII, MP; Funding acquisition: PZ, OJOIII, MP; Resources: MP; Supervision: MP.

Corresponding author

Correspondence to Maurizio Porfiri.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 774 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Ulbricht, N., Boldini, A. et al. Multifunctional nylon filaments for simultaneous ultra-violet light and strain sensing. Eur. Phys. J. D 77, 44 (2023). https://doi.org/10.1140/epjd/s10053-023-00626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00626-4

Navigation