Skip to main content
Log in

Collisional excitation and photoexcitation of Ca IV including a strong 3.2 \(\upmu \)m emission line

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Graphic Abstract

We report a detailed study of features of electron impact excitation (EIE) of Ca IV (Ca IV + e \(\rightarrow \) Ca IV* + \(e' \rightarrow \) Ca IV + h\(\nu + e'\)), for the first time using the relativistic Breit–Pauli R-matrix method with a large close-coupling wave function expansion of 54 fine structure levels belonging to \(n=2,3,4\) complexes. Calcium lines in the infrared (IR) region are expected to be observed by the high-resolution James Webb Space Telescope. Our study predicts the presence of a strong 3.2 \(\upmu \)m emission line in IR formed due to EIE of \(3p^{5~ 2}P^o_{3/2}-3p^{5~2}P^o_{1/2}\) in Ca IV. The EIE collision strength (\(\Omega \)) for the transition shows extensive resonance with enhanced background (top panel, Figure below), resulting in an effective collision strength (\(\Upsilon \)) of 2.2 at about 10\(^4\) K that increases to 9.66 around 3\(\times 10^5\) k (lower panel, Figure below). The present results include \(\Omega \) for all 1431 excitations among the 54 levels and \(\Upsilon \) for a limited number of transitions of possible interest. We found extensive resonances in the low-energy region of \(\Omega \), and convergence of the resonances and of the partial waves with the 54-level wave function. At high energy, \(\Omega \) decreases beyond the resonance region for forbidden transitions and is almost constant or decreases slowly for dipole-allowed transitions with low oscillation strength (f-values) and increases with Coulomb–Bethe behavior of ln(E) to almost a plateau for transitions with high f-values. The wave function of Ca IV was obtained from optimization of 13 configurations \(3s^23p^5, 3s3p^6, 3s^23p^43d, 3s^23p^44s, 3s^23p^44p, 3s^23p^44d, 3s^23p^44f, 3s^23p^45s, 3s3p^53d, 3s3p^54s, 3s3p^54p, 3p^63d, 3s3p^43d^2\), each with the core configuration of \(1s^22s^22p^6\), using the SUPERSTRUCTURE atomic structure program. They produce 387 fine structure levels. We report transition parameters—oscillator strength, line strength (S) and A-values-for a total of 93,296 electric dipole (E1), quadrupole (E2), octupole (E3), magnetic dipole (M1) and quadrupole (M2) transitions among these levels. The lifetimes of these levels are also presented.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All atomic data for energies, radiative transitions, collisional excitations, and effective collision strengths of a set of transitions are available online at the NORAD-Atomic-Data database at the Ohio State University at: https://norad.astronomy.osu.edu/.]

References

  1. S.N. Shore, T. Augusteijn, A. Ederoclite, H. Uthas, A &A 533, L8 (2011)

    ADS  Google Scholar 

  2. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 47, 481–52 (2009)

    Article  ADS  Google Scholar 

  3. J. Shepherd (2019) https://www.astrobin.com/full/406485/0/

  4. W.V. Jacobson-Galan et al., Astrophys. J. 898, 166 (2020)

    Article  ADS  Google Scholar 

  5. H. Feuchtgruber et al., ApJ 487, 962 (1997)

    Article  ADS  Google Scholar 

  6. R. Ignanc, J.P. Cassinelli, M. Quigley, B. Babler, ApJ 558, 771–779 (2001)

    Article  ADS  Google Scholar 

  7. H. Feuchtgruber, D. Lutz, D.A. Beintema, ApJS 136, 221 (2001)

    Article  ADS  Google Scholar 

  8. B. Zuckerman, D. Koester, I.N. Reid, M. Hunsch, ApJ 596, 477 (2003)

    Article  ADS  Google Scholar 

  9. A.K. Pradhan, S.N. Nahar, Atomic Astrophysics and Spectroscopy (Cambridge University Press, New York, 2011)

  10. J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14(Suppl. 2), 1–664 (1985)

    Google Scholar 

  11. https://physics.nist.gov/PhysRefData/ASD/levels_form.html

  12. A.M. Naqvi, PhD Thesis Harvard University (1951) (data available at NIST)

  13. C.M. Varsavsky, Astrophys. J. Suppl. Ser. 6, 75–107 (1961)

    Article  ADS  Google Scholar 

  14. B.C. Fawcett, A.H. Gabriel, Proc. Phys. Soc. 88, 262 (1966)

    Article  ADS  Google Scholar 

  15. K.-N. Huang, Y.-K. Kim, K.T. Cheng, J.P. Desclaux, ADNDT28, 355–377 (1983)

  16. N.J. Wilson, A. Hibbert, K.L. Bell, Phys. Scr. 61, 603–610 (2000)

    Article  ADS  Google Scholar 

  17. A.H. Gabriel, B.C. Fawcett, C. Jordan, Proc. Phys. Soc. 87, 825 (1966)

    Article  ADS  Google Scholar 

  18. D.G. Hummer, K.A. Berrington, W. Eissner, A.K. Pradhan, H.E. Saraph, J.A. Tully, Astron. Astrophys. 279, 298–309 (1993)

    ADS  Google Scholar 

  19. K.A. Berrington, W. Eissner, P.H. Norrington, Comput. Phys. Commun. 92, 290–420 (1995)

    Article  ADS  Google Scholar 

  20. W. Eissner, M. Jones, H. Nussbaumer, Comput. Phys. Commun. 8, 270–306 (1974)

    Article  ADS  Google Scholar 

  21. S.N. Nahar, W. Eissner, G.X. Chen, A.K. Pradhan, A &A 408, 789 (2003)

  22. P.G. Burke, W.D. Robb, Adv. At. Mol. Phys. 11, 143–214 (1975)

  23. N.S. Scott, P.G. Burke, J. Phys. B 12, 4299 (1980)

    Article  ADS  Google Scholar 

  24. N.S. Scott, K.T. Taylor, Comput. Phys. Commun. 25, 347 (1982)

    Article  ADS  Google Scholar 

  25. A. Burgess, J.A. Tully, J. Phys. B 11, 4271 (1978)

    Article  ADS  Google Scholar 

  26. S.N. Nahar, Written in, unpublished (2013)

  27. S.N. Nahar, Astron. Astrophys. Suppl. Ser. 127, 253 (2000)

    Article  ADS  Google Scholar 

  28. NORAD-Atomic-Data, https://norad.astronomy.osu.edu/

Download references

Acknowledgements

All computations were carried on the high-performance computers of the Ohio Supercomputer Center. BS acknowledges the IRSIP fellowship from the Government of Pakistan to carry out the research at the Ohio State University.

Author information

Authors and Affiliations

Authors

Contributions

Both authors, S.N. Nahar and B. Shafique, contributed equally to the contents of the paper. While SNN trained BS, set up the project, wrote necessary program, and remained engaged in studying the project, BS picked up all aspects of computations, carried out computations, and was engaged in the analysis.

Corresponding author

Correspondence to Sultana N. Nahar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahar, S., Shafique, B. Collisional excitation and photoexcitation of Ca IV including a strong 3.2 \(\upmu \)m emission line. Eur. Phys. J. D 77, 45 (2023). https://doi.org/10.1140/epjd/s10053-023-00622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00622-8

Navigation