Skip to main content
Log in

Unconventional magnon blockade in a superconducting qubit coupled magnomechanical system

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this study we theoretically and numerically analyze the magnon statistics properties of a weakly driven qubit–magnon–phonon system consisting of a magnon mode in a ferromagnetic yttrium iron garnet (YIG) coupled to a transmontype superconducting qubit and also to the mechanical mode of vibration of the YIG sphere. We analytically determine the optimal magnon detuning required for occurrence of magnon blockade in weak Kerr nonlinear regime. We also numerically evaluate the second order magnon correlation function and plot it against different system parameters to find that the numerical results are in agreement with analytical optimal conditions. we study the dependence of magnon statistics (second-order correlation function) on different system parameters (magnon–phonon coupling strength, magnon detuning and Kerr nonlinearity) in a weakly driven qubit coupled magnomechanical system consisting of a suerconducting qubit, a magnon mode and a mechanical modes where the magnon mode is coupled with both the qubit and mechanical modes. The system exhibits unconventional blockade (i.e at weak nonlinearity), with the value of second-order correlation function in the range of \(10\,\hat{}{-3}\)\(10\,\hat{}{-2}\) indicating very strong magnon antibunching.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. This article has no associated experimental data as this is completely a theoretical and numerical study.

References

  1. Z.-L. Xiang, S. Ashhab, J.Q. You, F. Nori, Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

  2. G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, J. Schmiedmayer, Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. U.S.A. 112, 3866 (2015)

    ADS  Google Scholar 

  3. H. Huebl, C.W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, S.T.B. Goennenwein, High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    ADS  Google Scholar 

  4. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    ADS  Google Scholar 

  5. X. Zhang, C.-L. Zou, L. Jiang, H.X. Tang, Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    ADS  Google Scholar 

  6. M. Goryachev, W.G. Farr, D.L. Creedon, Y. Fan, M. Kostylev, M.E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014)

    ADS  Google Scholar 

  7. L. Bai, M. Harder, Y.P. Chen, X. Fan, J.Q. Xiao, C.-M. Hu, Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015)

    ADS  Google Scholar 

  8. D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, J.Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf. 1, 15014 (2015)

    ADS  Google Scholar 

  9. O.O. Soykaland, M.E. Flatte, Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    ADS  Google Scholar 

  10. B.Z. Rameshti, Y. Cao, G.E.W. Bauer, Magnetic spheres in microwave cavities. Phys. Rev. B 91, 214430 (2015)

    ADS  Google Scholar 

  11. Y.P. Wang, G.Q. Zhang, D. Zhang, T.F. Li, C.M. Hu, J.Q. You, Phys. Rev. Lett. 120, 057202 (2018). arXiv:1707.06509

  12. Y.P. Wang, G.Q. Zhang, D. Zhang, X.Q. Luo, W. Xiong, S.P. Wang, T.F. Li, C.M. Hu, J.Q. You, Phys. Rev. B 94, 224410 (2016). arXiv:1609.07891

    ADS  Google Scholar 

  13. Z.X. Liu, B. Wang, H. Xiong, Y. Wu, Opt. Lett. 43, 3698 (2018). arXiv:1806.08289

    ADS  Google Scholar 

  14. X. Zhang, C.L. Zou, N. Zhu, F. Marquardt, L. Jiang, H.X. Tang, Nat. Commun. 6, 8914 (2015). arXiv:1507.02791

    ADS  Google Scholar 

  15. C. Braggio, G. Carugno, M. Guarise, A. Ortolan, G. Ruoso, Phys. Rev. Lett. 118, 107205 (2017). arXiv:1609.08147

    ADS  Google Scholar 

  16. R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. B 93, 174427 (2016). arXiv:1601.03908

    ADS  Google Scholar 

  17. L. Bai, M. Harder, Y.P. Chen, X. Fan, J.Q. Xiao, C.M. Hu, Phys. Rev. Lett. 114, 227201 (2015). arXiv:1504.01335

    ADS  Google Scholar 

  18. L. Bai, M. Harder, P. Hyde, Z. Zhang, C.M. Hu, Y.P. Chen, J.Q. Xiao, Phys. Rev. Lett. 118, 217201 (2017). arXiv:1706.00347

    ADS  Google Scholar 

  19. V.L. Grigoryan, K. Shen, K. Xia, Phys. Rev. B 98, 024406 (2018). arXiv:1702.07110

    ADS  Google Scholar 

  20. B. Yao, Y.S. Gui, J.W. Rao, S. Kaur, X.S. Chen, W. Lu, Y. Xiao, H. Guo, K.P. Marzlin, C.M. Hu, Nat. Commun. 8, 1437 (2017)

    ADS  Google Scholar 

  21. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, Y. Nakamura, Science 349, 405 (2015). arXiv:1410.3781

    ADS  MathSciNet  Google Scholar 

  22. D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, Y. Nakamura, Sci. Adv. 3, e1603150 (2017)

    ADS  Google Scholar 

  23. J.A. Haigh, S. Langenfeld, N.J. Lambert, J.J. Baumberg, A.J. Ramsay, A. Nunnenkamp, A.J. Ferguson, Phys. Rev. A 92, 063845 (2015). arXiv:1510.06661

    ADS  Google Scholar 

  24. A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, Y. Nakamura, Phys. Rev. Lett. 116, 223601 (2016). arXiv:1510.01837

    ADS  Google Scholar 

  25. X. Zhang, N. Zhu, C.L. Zou, H.X. Tang, Phys. Rev. Lett. 117, 123605 (2016). arXiv:1510.03545

    ADS  Google Scholar 

  26. J.A. Haigh, A. Nunnenkamp, A.J. Ramsay, A.J. Ferguson, Phys. Rev. Lett. 117, 133602 (2016). arXiv:1607.02985

    ADS  Google Scholar 

  27. S. Sharma, Y.M. Blanter, G.E.W. Bauer, Phys. Rev. Lett. 121, 087205 (2018). arXiv:1804.02683

    ADS  Google Scholar 

  28. A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, K. Usami, Phys. Rev. Lett. 120, 133602 (2018). arXiv:1711.09319

    ADS  Google Scholar 

  29. Y.P. Gao, C. Cao, T.J. Wang, Y. Zhang, C. Wang, Phys. Rev. A 96, 023826 (2017)

    ADS  Google Scholar 

  30. X.F. Zhang, C.L. Zou, L. Jiang, H.X. Tang, Sci. Adv. 2, e1501286 (2016)

    ADS  Google Scholar 

  31. H.T. Tan, Phys. Rev. Res. 1, 033161 (2019)

    Google Scholar 

  32. B. Wang, Z.X. Liu, C. Kong, H. Xiong, Y. Wu, Opt. Express 26, 20248 (2018)

    ADS  Google Scholar 

  33. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018)

    ADS  Google Scholar 

  34. J. Li, S.Y. Zhu, G.S. Agarwal, Phys. Rev. A 99, 021801 (2019)

    ADS  Google Scholar 

  35. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkowski, J.P. Sethna, H.D. Abruña, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722 (2002)

    ADS  Google Scholar 

  36. C.W.J. Beenakker, Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646 (1991)

    ADS  Google Scholar 

  37. I. Aleiner, P. Brouwer, L. Glazman, Quantum effects in Coulomb blockade. Phys. Rep. 358, 309 (2002)

    ADS  Google Scholar 

  38. C.J. Gorter, A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths. Physica 17, 777 (1951)

    ADS  Google Scholar 

  39. A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    ADS  Google Scholar 

  40. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nat. (Lond.) 87, 436 (2005)

    Google Scholar 

  41. D.E. Chang, V. Gritsev, G. Morigi, V. Vuletić, M.D. Lukin, E.A. Demler, Nat. Phys. 4(11), 884 (2008)

    Google Scholar 

  42. A. Miranowicz, J. Bajer, M. Paprzycka, Y. Liu, A.M. Zagoskin, F. Nori, Phys. Rev. A 90(3), 033831 (2014)

    ADS  Google Scholar 

  43. M.J. Hartmann, F.G.S.L. Brandao, M.B. Plenio, Nat. Phys. 2(12), 849 (2006)

    Google Scholar 

  44. A.D. Greentree, C. Tahan, J.H. Cole, L.C.L. Hollenberg, Nat. Phys. 2(12), 856 (2006)

    Google Scholar 

  45. D.G. Angelakis, M.F. Santos, S. Bose, Phys. Rev. A 76(3), 031805 (2007)

    ADS  Google Scholar 

  46. C. Lang et al., Phys. Rev. Lett. 106(24), 243601 (2011)

    ADS  Google Scholar 

  47. A.J. Hoffman, S.J. Srinivasan, S. Schmidt, L. Spietz, J. Aumentado, H.E. Türeci, A.A. Houck, Phys. Rev. Lett. 107(5), 053602 (2011)

    ADS  Google Scholar 

  48. Y. Liu, X.-W. Xu, A. Miranowicz, F. Nori, Phys. Rev. A 89(4), 043818 (2014)

    ADS  Google Scholar 

  49. F.-Y. Hong, S.-J. Xiong, Phys. Rev. A 78(1), 013812 (2008)

    ADS  Google Scholar 

  50. H.-Z. Wu, Z.-B. Yang, S.-B. Zheng, Phys. Rev. A 82(3), 034307 (2010)

    ADS  Google Scholar 

  51. Y. Han, B. He, K. Heshami, C.-Z. Li, C. Simon, Phys. Rev. A 81(5), 052311 (2010)

    ADS  Google Scholar 

  52. M.J. Hartmann, Phys. Rev. Lett. 104(11), 113601 (2010)

    ADS  Google Scholar 

  53. L.-M. Duan, M. Lukin, J.I. Cirac, P. Zoller, Nature 414(6862), 413 (2001)

    ADS  Google Scholar 

  54. H.J. Kimble, Nature 453(7198), 1023 (2008)

    ADS  Google Scholar 

  55. J.L. O’Brien, A. Furusawa, J. Vučković, Nat. Photon. 3(12), 687 (2009)

    ADS  Google Scholar 

  56. P. Komar, S.D. Bennett, K. Stannigel, S.J.M. Habraken, P. Rabl, P. Zoller, M.D. Lukin, Phys. Rev. A 87(1), 013839 (2013)

    ADS  Google Scholar 

  57. J.-Q. Liao, F. Nori, Phys. Rev. A 88(2), 023853 (2013)

    ADS  Google Scholar 

  58. H. Wang, X. Gu, Y. Liu, A. Miranowicz, F. Nori, Phys. Rev. A 92(3), 033806 (2015)

    ADS  Google Scholar 

  59. Y. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, F. Nori, Phys. Rev. A 82(3), 032101 (2010)

    ADS  Google Scholar 

  60. N. Didier, S. Pugnetti, Y.M. Blanter, R. Fazio, Phys. Rev. B 84(5), 054503 (2011)

    ADS  Google Scholar 

  61. A. Miranowicz, J. Bajer, N. Lambert, Y. Liu, F. Nori, Phys. Rev. A 93(1), 013808 (2016)

    ADS  Google Scholar 

  62. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322(5899), 235 (2008)

    ADS  Google Scholar 

  63. S. Gupta, K.L. Moore, K.W. Murch, D.M. Stamper-Kurn, Phys. Rev. Lett. 99(21), 213601 (2007)

    ADS  Google Scholar 

  64. T.C.H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett 104, 183601 (2010)

    ADS  Google Scholar 

  65. H.J. Carmichael, Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790 (1985)

    ADS  Google Scholar 

  66. M. Bamba, A. Imamoglu, I. Carusotto, C. Ciuti, Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)

    ADS  Google Scholar 

  67. X.W. Xu, Y.J. Li, Antibunching photons in a cavity coupled to an optomechanical system. J. Opt. B At. Mol. Opt. Phys 46, 035502 (2013)

    ADS  Google Scholar 

  68. V. Savona, Unconventional photon blockade in coupled optomechanical systems. arXiv:1302.5937v2

  69. H. Flayac, V. Savona, Unconventional photon blockade. Phys. Rev. A 96, 053810 (2017)

    ADS  Google Scholar 

  70. S. Ferretti, V. Savona, D. Gerace, Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013)

    ADS  Google Scholar 

  71. H.Z. Shen, Y.H. Zhou, X.X. Yi, Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)

    ADS  Google Scholar 

  72. H. Flayac, V. Savona, Input–output theory of the unconventional photon blockade. Phys. Rev. A 88, 033836 (2013)

    ADS  Google Scholar 

  73. X.W. Xu, Y. Li, Tunable photon statistics in weakly nonlinear photonic molecules. Phys. Rev. A 90, 043822 (2014)

    ADS  Google Scholar 

  74. S. Ferretti, V. Savona, D. Gerace, Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013)

    ADS  Google Scholar 

  75. H.Z. Shen, Y.H. Zhou, X.X. Yi, Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A 91, 063808 (2015)

    ADS  Google Scholar 

  76. A. Majumdar, M. Bajcsy, A. Rundquist, J. Vuckovic, Loss-enabled sub-Poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett. 108, 183601 (2012)

    ADS  Google Scholar 

  77. W. Zhang, Z.Y. Yu, Y.M. Liu, Y.W. Peng, Strong photon antibunching of symmetric and antisymmetric modes in weakly nonlinear photonic molecules. Phys. Rev. A 89, 043832 (2014)

    ADS  Google Scholar 

  78. M.-A. Lemonde, N. Didier, A.A. Clerk, Phys. Rev. A 90(6), 063824 (2014)

    ADS  Google Scholar 

  79. H. Snijders, J. Frey, J. Norman, H. Flayac, V. Savona, A. Gossard, J. Bowers, M. van Exter, D. Bouwmeester, W. Löffler. arXiv:1803.10992 (2018)

  80. Z.X. Liu, H. Xiong, Y. Wu, Magnon blockade in a hybrid ferromagnet-superconductor quantum system. Phys. Rev. B 100, 134421 (2019)

    ADS  Google Scholar 

  81. Y. Xu, T. Yang, L. Lin, J. Song, Conventional and unconventional magnon blockades in a qubit-magnon hybrid quantum system. J. Opt. Soc. Am. B 38, 876–884 (2021)

    ADS  Google Scholar 

  82. L. Wang, Z.X. Yang, Y.M. Liu, C.H. Bai, D.Y. Wang, S. Zhang, H.F. Wang, Magnon blockade in a P-T symmetric-like cavity magnomechanical system. Ann. Phys. 532(7), 2000028 (2020)

    MathSciNet  Google Scholar 

  83. Z.X. Liu, H. Xiong, M.Y. Wu, Y. Li, Absorption of magnons in dispersively coupled hybrid quantum systems. Phys. Rev. A 103, 063702 (2021)

    ADS  MathSciNet  Google Scholar 

  84. Z.X. Liu, Y.Q. Li, Optomagnonic frequency combs. Photon. Res. 10, 2786–2793 (2022)

    Google Scholar 

  85. Y.-P. Wang, G.-Q. Zhang, D. Xu, T.-F. Li, S.-Y. Zhu, J.-S. Tsai, J.-Q. You, Quantum simulation of the fermion-boson composite quasi-particles with a driven qubit-magnon hybrid quantum system. arXiv:1903.12498

  86. B. Sarma, A.K. Sarma, Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A 98, 013826 (2018)

    ADS  Google Scholar 

  87. P. Meystre, A short walk through quantum optomechanics. Ann. Phys. 525(3), 215 (2013)

    MATH  Google Scholar 

  88. C.H. Metzger, K. Karrai, Cavity cooling of a microlever. Nature 432, 1002 (2004)

    ADS  Google Scholar 

  89. D.L. Quirion, S.P. Wolski, Y. Tabuchi, S. Kono, K. Usami, Y. Nakamura, Entanglement-based single-shot detection of a single magnon with a superconducting qubit. Science 367(6476), 425–428 (2020)

    ADS  Google Scholar 

  90. H. Tanji, S. Ghosh, J. Simon, B. Bloom, V. Vuletic, Heralded single-magnon quantum memory for photon polarization states. Phys. Rev. Lett. PRL 103, 043601 (2009)

    ADS  Google Scholar 

  91. E.G. Spencer, R.C. LeCraw, Phys. Rev. Lett. 1, 241 (1958)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors have been involved in sketching out the course of the research article and devising the theoretical model. Authors AP and DG both contributed towards the analytical calculation and numerical simulation as well as to prepare the first manuscript. Author PCJ reviewed the first manuscript and contributed valuable corrections and modifications and helped to prepare the final manuscript.

Corresponding author

Correspondence to Arumay Parai.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parai, A., Ganthya, D. & Jana, P.C. Unconventional magnon blockade in a superconducting qubit coupled magnomechanical system. Eur. Phys. J. D 77, 40 (2023). https://doi.org/10.1140/epjd/s10053-023-00619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00619-3

Navigation