Skip to main content
Log in

Terahertz radiation generation driven by beating of chirped laser pulses in single-walled carbon nanotubes by applying tapered magnetic field

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this study, the terahertz (THz) radiation generation from beating of two chirped lasers in the carbon nanotubes is investigated in the presence of an external tapered magnetic field. The electric field of chirped laser beams interacts with the carbon nanotubes, leads to the ionization of the carbon atoms, and produces a plasma medium. Then, the interaction of the laser beams with the electronic clouds of plasma generates ponderomotive force that leads to the creation of a macroscopic electron current at the beat frequency which can generate THz radiation. Each nanotube acts as an oscillating electrical dipole and produces terahertz radiation. The results indicated that in the presence of a tapered magnetic field, the THz radiation power can be tuned, and in this case, more THz power is generated than a uniform magnetic field. It was also found that the THz power is produced at \(\omega_{T} = \frac{{\omega_{P} }}{\sqrt 2 },\) when the beat frequency is equal to the surface plasmon resonance. Moreover, the radius and length of carbon nanotubes have significant effects on the terahertz power, so that with increasing these values, terahertz power increases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: The data that supports the findings of this study are available within the article].

References

  1. R.R. Hartmann, J. Kono, M.E. Portnoi, Terahertz science and technology of carbon Nanomaterials. Nanotechnology 25, 322001 (2014)

    Article  Google Scholar 

  2. X.C. Zhang, A. Shkurinov, Y. Zhang, Extreme terahertz science. Nat. Photonics 11, 16–18 (2017)

    Article  ADS  Google Scholar 

  3. R. Nemati Siahmazgi, S. Jafari, Tunable terahertz radiation generation using the beating of two super-Gaussian laser beams in the collisional nanocluster plasma. J. Opt. Soc. Am. B 37, 3296–3302 (2020)

    Article  ADS  Google Scholar 

  4. M. Abedi-Varaki, S. Jafari, Enhanced THz radiation from beating of two Cosh-Gaussian laser beams in a wiggler-assisted collisional magnetized plasma. Opt. Soc. Am. B 35, 1165–1172 (2018)

    Article  ADS  Google Scholar 

  5. M. Aggarwal, S. Vij, N. Kant, Wiggler magnetic field assisted second harmonic generation in clusters. Eur. Phys. J. D 69, 149 (2015)

    Article  ADS  Google Scholar 

  6. R. Nemati Siahmazgi, S. Jafari, “Effects of the helical magnetic wiggler on a laser beam interacting with a lattice of metallic nanoparticles: plasmonic and body waves” Laser Phys. Lett 16, 055003 (2019)

    Google Scholar 

  7. M. Abedi-Varaki, Enhanced THz radiation generation by photo-mixing of top hat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter. Phys. Plasmas 25, 023109 (2018)

    Article  ADS  Google Scholar 

  8. E.G. Fedorov, A.V. Zhukov, M.B. Belonenko, T.F. George, 2D electromagnetic breathers in carbon nanotubes. Eur. Phys. J. D 66, 219 (2012)

    Article  ADS  Google Scholar 

  9. S. Abadal, C. Han, J.M. Jornet, Wave Propagation and Channel Modeling in Chip-Scale Wireless Communications: A Survey from Millimeter-Wave to Terahertz and Optics. IEEE Access 8, 278–293 (2019)

    Article  Google Scholar 

  10. D.M. Mittleman, Perspective: Terahertz science and technology. J. Appl. Phys. 122, 230901 (2017)

    Article  Google Scholar 

  11. L. Yu, L. Hao, T. Meiqiong, H. Jiaoqi, L. Wei, D. Jinying, C. Xueping, F. Weiling, Z. Yang, The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv. 9, 9354–9363 (2019)

    Article  ADS  Google Scholar 

  12. V.Y. Fedorov, S. Tzortzakis, Extreme THz fields from two-color filamentation of midinfrared laser pulses. Phys. Rev. A 97, 063842 (2018)

    Article  ADS  Google Scholar 

  13. L.H. Eadie, C.B. Reid, A.J. Fitzgerald, V.P. Wallace, Optimizing multi-dimensional terahertz imaging analysis for colon cancer diagnosis. Expert Syst. Appl. 40, 2043–2050 (2013)

    Article  Google Scholar 

  14. J. Neu, C.A. Schmuttenmaer, Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. App. Phys. 124, 231101 (2018)

    Article  ADS  Google Scholar 

  15. J.B. Baxter, G.W. Guglietta, Terahertz Spectroscopy. Anal. Chem. 83, 4342–4368 (2011)

    Article  Google Scholar 

  16. J.H. Son, S.J. Oh, H. Cheon, Potential clinical applications of terahertz radiation. J. Appl. Phys. 125, 190901 (2019)

    Article  ADS  Google Scholar 

  17. A.K. Panwar, A. Singh, A. Kumar, H. Kim, Terahertz imaging system for biomedical applications: current status. Int. J. Eng. Adv. Techno 13, 33–39 (2013)

    Google Scholar 

  18. C. Kulesa, Terahertz Spectroscopy for Astronomy: From Comets to Cosmology. IEEE Trans. THz Sci. Technol. 1, 232–240 (2011)

    Article  Google Scholar 

  19. A.B. Matsko, D.V. Strekalov, N. Yu, Sensitivity of terahertz photonic receivers. Phys. Rev. A 77, 043812 (2008)

    Article  ADS  Google Scholar 

  20. F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.C. Bandulet, F. Vidal, R. Morandotti, Generation of Intense Terahertz Radiation via Optical Methods. IEEE J. Sel. Top. Quant. Electron 17, 5–16 (2011)

    Article  ADS  Google Scholar 

  21. R. Sharma, H. Kaur, M. Singh, Recent advances of efficient design of terahertz quantum-cascade lasers. Plasmonics 16, 449–461 (2020)

    Article  Google Scholar 

  22. V. Thakur, N. Kant, S. Vij, Effect of cross-focusing of two laser beams on THz radiation in graphite nanoparticles with density ripple. Phys. Scr. 95, 045602 (2020)

    Article  ADS  Google Scholar 

  23. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt Comm 513, 128112 (2022)

    Article  Google Scholar 

  24. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant excitation of THz radiations by the interaction of amplitude-modulated laser beams with an anharmonic CNTs in the presence of static D.C. electric and magnetic fields. Chinese J. Phys 78, 453–462 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17, 381–388 (2022)

    Article  Google Scholar 

  26. Q. Zhang, E.H. Haroz, Z. Jin, L. Ren, X. Wang, R.S. Arvidson, A. Lüttge, J. Kono, Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett. 13, 5991 (2013)

    Article  ADS  Google Scholar 

  27. L. Ren, Q. Zhang, S. Nanot, I. Kawayama, M. Tonouchi, J. Kono, Terahertz dynamics of quantum-confined electrons in carbon nanomaterials. J Infrared Milli Terahz Waves 33, 846 (2012)

    Article  Google Scholar 

  28. P. Avouris, M. Freitag, V. Perebeions, Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341 (2008)

    Article  ADS  Google Scholar 

  29. S. Vij, N. Kant, V. Thakur, Resonant Enhancement of THz Radiation Through Vertically Aligned Carbon Nanotubes Array by Applying Wiggler Magnetic Field. Plasmonics 14, 1051–1056 (2019)

    Article  Google Scholar 

  30. R. Malik, R. Uma, THz generation by laser coupling to carbon nanotube array. Phys. Plasmas 25, 013106 (2018)

    Article  ADS  Google Scholar 

  31. A. Hematizadeh, S.M. Jazayeri, B. Ghafary, Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field. Phys. Plasmas 25, 023514 (2018)

    Article  ADS  Google Scholar 

  32. A. Zubair, D.E. Tsentalovich, C.C. Young, M.S. Heimbeck, H.O. Everitt, M. Pasquali, Carbon nanotube fiber terahertz polarizer. Appl. Phys. Lett. 108, 141107 (2016)

    Article  ADS  Google Scholar 

  33. S. Sharma, A. Vijay, Nonlinear mixing of lasers and terahertz generation on CNT embedded metal surface. Optik 199, 163381 (2019)

    Article  ADS  Google Scholar 

  34. A. Mehta, N. Kant, Terahertz radiation generation driven by the frequency chirped laser pulse in magneto-active plasma. Proc. SPIE 10917, 109170R (2019)

    Google Scholar 

  35. S. Kumar, M. Yoon, Electron acceleration by a chirped circularly polarized laser pulse in vacuum in the presence of a planar magnetic wiggler. Phys. Scr. 77, 025404 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RNS. and S.J. came up with the basic idea behind this work. ZG. and RNS. carried out the calculations. ZG. did numerical simulations and plotted the graphs. SJ. and RNS. carried out result confirmation and discussion. All authors reviewed the manuscript.

Corresponding authors

Correspondence to R. Nemati Siahmazgi or S. Jafari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayemmoniri, Z., Siahmazgi, R.N. & Jafari, S. Terahertz radiation generation driven by beating of chirped laser pulses in single-walled carbon nanotubes by applying tapered magnetic field. Eur. Phys. J. D 77, 48 (2023). https://doi.org/10.1140/epjd/s10053-023-00612-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00612-w

Navigation