Skip to main content
Log in

High-energy–density positron and \({\upgamma }\)-photon generation via two counter-propagating ultra-relativistic laser irradiating a solid target

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

By using two counter-propagating ultra-intense lasers interaction with a solid aluminum (Al) target, an all-optical scheme was demonstrated with the generation of high-bright GeV photons and high energy density electron–positron pairs. The multi-photon Breit–Wheeler (BW) process is simulated by Particle-in-cell (PIC) code EPOCH with a quantum electrodynamics (QED) module implemented. The target front side keeps still due to the involvement of hot electrons in the target in two colliding laser schemes. High-frequency photons are produced by hot electrons colliding with the reflected laser pulse at the front of the target, followed by electron and positron pairs production. On the lateral side of the target, electron bunches are extracted from the target by the p-polarized laser electromagnetic field and accelerated by the laser pondermotive force to collide with the counter-propagating laser. By modulating the target transversal size, the pulse energy is allocated to the target front side and lateral side. It is found that on the lateral side the laser will be more efficient in the generation of gamma photons and positrons, which may helpful for investigating high-energy pair production and gamma-ray emission. The generated positrons are as dense as 40 nc and can be accelerated to over 1 GeV. On the target longitudinally front side, the participation of hot electrons in the target plays an important role in the generation of photons and positrons. When the target length is set to the corrected skin depth of the plasma, electrons are fully involved in photon production. The pairs yield reaches 1.68 × 1011, whose density is 90 nc. These findings propose a feasible scheme to produce high-energy and high-density pair plasma for extensive scientific research and applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Date Availability Statement

“This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)

    Article  ADS  Google Scholar 

  2. A. Dubietis, G. Jonušauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88(4–6), 437–440 (1992)

    Article  ADS  Google Scholar 

  3. S. Gales et al., The extreme light infrastructure—nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 81(9), 094301 (2018)

    Article  ADS  Google Scholar 

  4. I.B. Mukhin et al., Design of the front-end system for a subexawatt laser of the XCELS facility. Quantum Electron. 51(9), 759 (2021)

    Article  ADS  Google Scholar 

  5. J. Kataoka et al., Multiwavelength Observations of the powerful gamma-ray quasar PKS 1510–089: Clues on the jet composition. Astrophys. J. 672(2), 787 (2008)

    Article  ADS  Google Scholar 

  6. B.W. Stappers et al., An X-ray nebula associated with the millisecond pulsar B1957+ 20. Science 299(5611), 1372–1374 (2003)

    Article  ADS  Google Scholar 

  7. B. Cerutti, A.A. Philippov, G. Dubus, Dissipation of the striped pulsar wind and non-thermal particle acceleration: 3D PIC simulations. Astron. Astrophys. 642, A204 (2020)

    Article  ADS  Google Scholar 

  8. A.D. Piazza et al., Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Modern Phys. 84(3), 1177–1228 (2011)

    Article  Google Scholar 

  9. H. Chen et al., Making relativistic positrons using ultraintense short pulse lasers. Phys. Plasmas 16(12), 105001 (2009)

    Article  Google Scholar 

  10. E.P. Liang, S.C. Wilks, M. Tabak, Pair production by ultraintense lasers. Phys. Rev. Lett. 81(22), 4887 (1998)

    Article  ADS  Google Scholar 

  11. S.V. Bulanov et al., On the problems of relativistic laboratory astrophysics and fundamental physics with super powerful lasers. Plasma Phys. Rep. 41(1), 1–51 (2015)

    Article  ADS  Google Scholar 

  12. C. Müller, C.H. Keitel, Abundant positron production. Nat. Photonics 3(5), 245–246 (2009)

    Article  ADS  Google Scholar 

  13. O.J. Pike et al., A photon–photon collider in a vacuum hohlraum. Nat. Photonics 8(6), 434–436 (2014)

    Article  ADS  Google Scholar 

  14. G. Breit, J.A. Wheeler, Collision of two light quanta. Phys. Rev. 46(12), 1087 (1934)

    Article  ADS  MATH  Google Scholar 

  15. X.L. Zhu, T.P. Yu, Z.M. Sheng, Y. Yin, I.C. Turcu, A. Pukhov, Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas. Nat. Commun. 7(1), 1–8 (2016)

    Article  ADS  Google Scholar 

  16. W.H. Furry, On bound states and scattering in positron theory. Phys. Rev. 81(1), 115 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. T. Grismayer et al., Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas 23(5), 056706 (2016)

    Article  ADS  Google Scholar 

  18. X.L. Zhu, Y. Yin, T.P. Yu et al., Enhanced electron trapping and γ ray emission by ultra-intense laser irradiating a near-critical-density plasma filled gold cone. New J. Phys. 17(5), 053039 (2015)

    Article  ADS  Google Scholar 

  19. Yu. Lu et al., Enhanced copious electron–positron pair production via electron injection from a mass-limited foil. Plasma Phys. Controll. Fusion 60(12), 125008 (2018)

    Article  ADS  Google Scholar 

  20. J.X. Liu et al., Enhanced electron–positron pair production by ultra intense laser irradiating a compound target. Plasma Phys. Controlled Fusion 58(12), 125007 (2016)

    Article  ADS  Google Scholar 

  21. T.P. Yu, A. Pukhov, Z.M. Sheng et al., Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target. Phys. Rev. Lett. 110(4), 45001–45001 (2013)

    Article  ADS  Google Scholar 

  22. C.P. Ridgers et al., Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 108(16), 165006 (2012)

    Article  ADS  Google Scholar 

  23. T. Yuan et al., Target transverse size and laser polarization effects on pair production during ultra-relativistic-intense laser interaction with solid targets. Phys. Plasmas 24(6), 063104 (2017)

    Article  ADS  Google Scholar 

  24. C.S. Brady et al., Gamma-ray emission in near critical density plasmas. Plasma Phys. Controlled Fusion 55(12), 124016 (2013)

    Article  ADS  Google Scholar 

  25. T.D. Arber et al., Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion 57(11), 113001 (2015)

    Article  ADS  Google Scholar 

  26. D. Del Sorbo, D.R. Blackman, R. Capdessus, K. Small, C. Slade-Lowther, W. Luo, M.J. Duff, A.P. Robinson, P. McKenna, Z.M. Sheng, J. Pasley, Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions. New J. Phys. 20(3), 033014 (2018)

    Article  Google Scholar 

  27. D. Seipt et al., Polarized QED cascades. New J. Phys. 23(5), 053025 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. A.R. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101(20), 2952–2965 (2008)

    Article  Google Scholar 

  29. C.P. Ridgers et al., Dense electron-positron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas. Phys. Plasmas 20(5), 056701 (2013)

    Article  ADS  Google Scholar 

  30. T.G. Blackburn et al., Scaling laws for positron production in laser–electron-beam collisions. Phys. Rev. A 96, 2 (2017)

    Article  Google Scholar 

  31. J. Zhao, Y.T. Hu, Y. Lu et al., All-optical quasi-monoenergetic GeV positron bunch generation by twisted laser fields. Commun. Phys. 5, 15 (2022)

    Article  Google Scholar 

  32. Z. Guo et al., Leveraging radiation reaction via laser-driven plasma fields. Plasma Phys. Controlled Fusion 61, 6 (2019)

    Article  Google Scholar 

  33. X.Q. Yan et al., Generating high-current monoenergetic proton beams by a circularlypolarized laser pulse in the phase-stable acceleration regime. Phys. Rev. Lett. 100(13), 135003–135003 (2008)

    Article  ADS  Google Scholar 

  34. W. Zhou et al., High quality ion acceleration through the interaction of two matched counterpropagating transversely polarized Gaussian lasers with a flat foil target. Phys. Rev. Accel. Beams 21(2), 21301–21301 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11975308, 11805278, 11775305, 12005297, and 12075306), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDA25050200 and XDB16010600), The authors wish to acknowledge CFSA at the University of Warwick for allowing the usage of EPOCH. 32254

Author information

Authors and Affiliations

Authors

Contributions

MZ: Conceptualization, Methodology, Software. YM: Supervision, Project administration, Funding Acquisition, Writing-Review&Editing. XHY: Resources, Software. GBZ:Resources, Software. JXL: Supervision, Project administration, Funding Acquisition, Writing-Review&Editing. YY: Software,Validation. MP: Software,Validation. YC: Software,Validation. SK: Methodology.

Corresponding authors

Correspondence to Y. Y. Ma or J. X. Liu.

Additional information

High Field QED Physics. Guest editors: Francesco Pegoraro, David A. eis, Gianluca Sarri, Tongpu Yu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zi, M., Ma, Y.Y., Yang, X.H. et al. High-energy–density positron and \({\upgamma }\)-photon generation via two counter-propagating ultra-relativistic laser irradiating a solid target. Eur. Phys. J. D 77, 41 (2023). https://doi.org/10.1140/epjd/s10053-023-00597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00597-6

Navigation