Skip to main content
Log in

Hydroxylated buckminsterfullerene complexes with endohedral europium atom

  • Regular Article – Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Eu@C60(OH)30 and Eu@C60(OH)20 endo-structures were predicted by the (U)DFT quantum chemical method. The arrangement of hydroxyl groups corresponds to the arrangement of chlorine atoms in (D3d)-C60Cl30 and fluorine atoms in (D5d)-C60F20. The calculated squares of the electron spin ‹Ŝ2› were reproduced with high accuracy by the addition of the spins belonging to two unpaired valence electrons and 4f7 subsystem. The total spin multiplicity of the quasi-degenerate ground state is 2·2·8. Some of its 32 components can be distinguished by the IR spectrum. The europium avoids benzoid cycles. It is located asymmetrically within the [18]trannulene cycle in the Eu@C60(OH)30 complex and between a peripheral carbon atoms of the corannulene fragments in the Eu@C60(OH)20 complex. The value ‹Ŝ2› ≈ 16.75 a. u., calculated with MS = 7/2, is key number. It allows limiting the DFT study to only one spin component out of 32 possible components. In contrast with Eu@C60(OH)30 and Eu@C60(OH)20, the Eu@C60 has two quasi-degenerate endohedral spin-tautomers. The (C3v) tautomer includes the hexagonal pyramid EuC6 formed as a result of endohedral η6-bonding of the europium with cyclohexa-1,3,5-triene fragment of buckminsterfullerene. It was obtained for the low-spin and high-spin components of the quasi-degenerate state with the total multiplicity 3·8. The (C2v) tautomer includes a triangular EuC2 fragment and was obtained for the octet spin state. The energy difference of the spin-tautomers is small, but the difference in its IR spectra is very large.

Graphical Abstract

The hydroxylated endohedral complexes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.A. Popov, S. Yang, L. Dunsch, Chem. Rev. 113, 5989 (2013)

    Article  Google Scholar 

  2. H. Shinohara, Rep. Prog. Phys. 63, 843 (2000)

    Article  ADS  Google Scholar 

  3. O. Bolshakova, A. Borisenkova, M. Suyasova, V. Sedov, A. Slobodina, S. Timoshenko, E. Varfolomeeva, I. Golomidov, V. Lebedev, V. Aksenov, S. Sarantseva, Mater. Sci. & Engineering C 104, 109945 (2019)

    Article  Google Scholar 

  4. T. Inoue, Y. Kubozono, S. Kashino, Y. Takabayashi, K. Fujitaka, M. Hida, M. Inoue, T. Kanbara, S. Emura, T. Uruga, Chem. Phys. Lett. 316, 381 (2000)

    Article  ADS  Google Scholar 

  5. K. Sueki, K. Akiyama, K. Kikuchi, H. Nakahara, K. Tomura, J. Radioanal, Nucl. Chem. 239, 179 (1999)

    Article  Google Scholar 

  6. K. Sueki, K. Kikuchi, K. Akiyama, T. Sawa, M. Katada, S. Ambe, F. Ambe, H. Nakahara, Chem. Phys. Lett. 300, 140 (1999)

    Article  ADS  Google Scholar 

  7. P. A. Troshin, R. N. Lyubovskaya, I. N. Ioffe, N. B. Shustova, E. Kemnitz, S. I. Troyanov, Angew. Chem., Int. Ed. 44, 235 (2005).

  8. P.A. Troshin, A. Lapinski, A. Bogucki, M. Polomska, R.N. Lyubovskaya, Carbon 44, 2770 (2006)

    Article  Google Scholar 

  9. A.A. Popov, V.M. Senyavin, S.I. Troyanov, J. Phys. Chem. A 110, 7414 (2006)

    Article  Google Scholar 

  10. Yu.V. Fedoseeva, L.G. Bulusheva, A.V. Okotrub, I.P. Asanov, S.I. Troyanov, D.V. Vyalikh, Int. J. Quant. Chem. 111, 2688 (2011)

    Article  Google Scholar 

  11. L.N. Sidorov, Phys. Solid Stat. 44, 413 (2002)

    Article  ADS  Google Scholar 

  12. S.I. Troyanov, N.B. Shustova, A.A. Popov, L.N. Sidorov, Russ. Chem. Bull. 54, 1656 (2005)

    Article  Google Scholar 

  13. X.J. Gao, X. Shen, B.-Z. Chen, X. Gao, J. Phys. Chem. C 120, 11709 (2016)

    Article  Google Scholar 

  14. S. Suzuki, M. Kushida, S. Amamiya, S. Okada, K. Nakao, Chem. Phys. Lett. 327, 291 (2000)

    Article  ADS  Google Scholar 

  15. X. Gao, B. Sun, Y. Zhao, B.-Z. Chen, X. Gao, Dalton Trans. 44, 9561 (2015)

    Article  Google Scholar 

  16. S.G. Semenov, M.E. Bedrina, A.V. Titov, Russ. J. Gen. Chem. 90, 667 (2020)

    Article  Google Scholar 

  17. S.G. Semenov, M.E. Bedrina, A.V. Titov, J. Structur. Chem. 59, 506 (2018)

    Article  Google Scholar 

  18. A.V. Krisilov, I.V. Nechaev, A.L. Kotova, Kh.S. Shikhaliev, V.E. Chernov, B.A. Zon, Comput. Theor. Chem. 1054, 100 (2015)

    Article  Google Scholar 

  19. V. T. Lebedev, Yu. V. Kulvelis, A. S. Voronin, A. V. Komolkin, E. A. Kyzyma, T. V. Tropin, V. M. Garamus, Fullerenes, Nanotubes, and Carbon Nanostructure. 28, 30 (2020).

  20. A.V. Zakharova, M.E. Bedrina, Eur. Phys. J. D 74, 116 (2020)

    Article  ADS  Google Scholar 

  21. A.V. Zakharova, S.G. Semenov, M.E. Bedrina, A.V. Titov, Russ. J. Gen. Chem. 90, 287 (2020)

    Article  Google Scholar 

  22. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  23. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. X. Cao, M. Dolg, J. Chem. Phys. 115, 7348 (2001)

    Article  ADS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford CT, 2013.

  27. K.R. Asmis, G. Santambrogio, N. Brummer, J. Sauer, Angew. Chem. Int. Ed. 44, 3122 (2005)

    Article  Google Scholar 

  28. K.R. Asmis, J. Sauer, Mass Spectrom. Rev. 26, 542 (2007)

    Article  ADS  Google Scholar 

  29. G. Santambrogio, N. Brummer, L. Woste, J. Dobler, M. Sierka, J. Sauer, G. Meijer, K.R. Asmis, Phys. Chem. Chem. Phys. 10, 3992 (2008)

    Article  Google Scholar 

  30. S.G. Semenov, M.E. Bedrina, Russ. J. Gen. Chem. 79, 1741 (2009)

    Article  Google Scholar 

  31. K. Takatsuka, T. Fueno, K. Yamaguchi, Theor. Chim. Acta 48, 175 (1978)

    Article  Google Scholar 

  32. V.N. Staroverov, E.R. Davidson, Chem. Phys. Lett. 330, 161 (2000)

    Article  ADS  Google Scholar 

  33. S.G. Semenov, M.E. Bedrina, V.A. Klemeshev, M.V. Makarova, Opt. Spectrosc. 117, 516 (2014)

    Article  Google Scholar 

  34. R. McWeeny, J. Chem. Phys. 19, 1614 (1951)

    Article  Google Scholar 

  35. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  ADS  Google Scholar 

  36. M.V. Suyasova, V.T. Lebedev, V.P. Sedov, Yu.V. Kulvelis, A.V. Ievlev, V.I. Chizhik, A.N. Artemiev, A.D. Belyaev, Appl. Magn. Res. 50, 1163 (2019)

    Article  Google Scholar 

  37. S. Civis, A.U. Krisilov, M. Ferus, I.V. Nechaev, P. Kubelik, V.E. Chernov, B.A. Zon, Spectrochim. Acta A 254, 119593 (2021)

    Article  Google Scholar 

  38. F. G. N. Cloke, Chem. Soc. Rev. 17 (1993).

Download references

Funding

The work was supported by the Russian Science Foundation (Grant No. 20-13-00225).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Tatiana A. Andreeva.

Ethics declarations

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, S.G., Bedrina, M.E., Andreeva, T.A. et al. Hydroxylated buckminsterfullerene complexes with endohedral europium atom. Eur. Phys. J. D 76, 253 (2022). https://doi.org/10.1140/epjd/s10053-022-00583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00583-4

Navigation