Skip to main content
Log in

n-body correlation of Tonks–Girardeau gas

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

For the well-known exponential complexity, it is a giant challenge to calculate the correlation function for general many-body wave function. We investigate the ground state nth-order correlation functions of the Tonks–Girardeau (TG) gases. Basing on the wavefunction of free fermions and Bose–Fermi mapping method, we obtain the exact ground state wavefunction of TG gases. Utilizing the properties of Vandermonde determinant and Toeplitz matrix, the nth-order correlation function is formulated as \((N-n)\)-order Toeplitz determinant, whose element is the integral dependent on 2\((N-n)\) sign functions and can be computed analytically. By reducing the integral on domain \([0,2\pi ]\) into the summation of the integral on several independent domains, we obtain the explicit form of the Toeplitz matrix element ultimately. As the applications we deduce the concise formula of the reduced two-body density matrix and discuss its properties. The corresponding natural orbitals and their occupation distribution are plotted. Furthermore, we give a concise formula of the reduced three-body density matrix and discuss its properties. It is shown that in the successive second measurements, atoms appear in the regions where atoms populate with the maximum probability in the first measurement.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data in a data repository. [Authors comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. R. Glauber, Phys. Rev. 130, 2529 (1963)

    Article  ADS  Google Scholar 

  2. A. Bergschneider, V.M. Klinkhamer, J.H. Becher, R. Klemt, L. Palm, G. Zürn, S. Jochim, P.M. Preiss, Nat. Phys. 15, 640 (2019)

    Article  Google Scholar 

  3. R. Hanbury Brown, R.Q. Twiss, Nature 178, 1046 (1956)

    Article  ADS  Google Scholar 

  4. M. Schellekens, R. Hoppeler, A. Perrin, J.V. Gomes, D. Boiron, A. Aspect, C.I. Westbrook, Science 310, 648 (2005)

    Article  ADS  Google Scholar 

  5. T. Jeltes et al., Nature 445, 402 (2007)

    Article  ADS  Google Scholar 

  6. S.S. Hodgman, R.G. Dall, A.G. Manning, K.G.H. Baldwin, A.G. Truscott, Science 331, 1046 (2011)

    Article  ADS  Google Scholar 

  7. P.M. Preiss, J.H. Becher, R. Klemt, V. Klinkhamer, A. Bergschneider, N. Defenu, S. Jochim, Phys. Rev. Lett. 122, 143602 (2019)

    Article  ADS  Google Scholar 

  8. V. Guarrera, P. Wurtz, A. Ewerbeck, A. Vogler, G. Barontini, H. Ott, Phys. Rev. Lett. 107, 160403 (2011)

    Article  ADS  Google Scholar 

  9. R.G. Dall, A.G. Manning, S.S. Hodgman, W. RuGway, K.V. Kheruntsyan, A.G. Truscott, Nat. Phys. 9, 341 (2013)

    Article  Google Scholar 

  10. G. Hercé, J.-P. Bureik, A. Ténart, A. Aspect, A. Dareau, D. Clément. arXiv:2207.14070

  11. A. Bergschneider, V.M. Klinkhamer, J.H. Becher, R. Klemt, G. Zürn, P.M. Preiss, S. Jochim, Phys. Rev. A 97, 063613 (2018)

    Article  ADS  Google Scholar 

  12. M. Holten, L. Bayha, K. Subramanian, S. Brandstetter, C. Heintze, P. Lunt, P.M. Preiss, S. Jochim, Nature 606, 287 (2022)

    Article  ADS  Google Scholar 

  13. S.S. Hodgman, R.I. Khakimov, R.J. Lewis-Swan, A.G. Truscott, K.V. Kheruntsyan, Phys. Rev. Lett. 118, 240402 (2017)

    Article  ADS  Google Scholar 

  14. S.S. Hodgman, W. Bu, S.B. Mann, R.I. Khakimov, A.G. Truscott, Phys. Rev. Lett. 122, 233601 (2019)

    Article  ADS  Google Scholar 

  15. N.J. van Druten, W. Ketterle, Phys. Rev. Lett. 79, 549 (1997)

    Article  ADS  Google Scholar 

  16. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G.V. Shlyapnikov, T.W. Hänsch, I. Bloch, Nature 429, 277 (2004)

    Article  ADS  Google Scholar 

  17. T. Kinoshita, T. Wenger, D.S. Weiss, Science 305, 1125 (2004)

    Article  ADS  Google Scholar 

  18. T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, I. Bouchoule, Phys. Rev. Lett. 106, 230405 (2011)

    Article  ADS  Google Scholar 

  19. L. Tonks, Phys. Rev. 50, 955 (1936)

    Article  ADS  Google Scholar 

  20. M.D. Girardeau, J. Math. Phys. 1, 516 (1960)

    Article  ADS  Google Scholar 

  21. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  22. A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012)

    Article  ADS  Google Scholar 

  23. X.-W. Guan, M.T. Batchelor, C. Lee, Rev. Mod. Phys. 85, 1633 (2013)

    Article  ADS  Google Scholar 

  24. E.J.K.P. Nandani, X.-W. Guan, Chin. Phys. B 27, 070306 (2018)

    Article  ADS  Google Scholar 

  25. N. Fabbri, M. Panfil, D. Clément, L. Fallani, M. Inguscio, C. Fort, J.-S. Caux, Phys. Rev. A 91, 043617 (2015)

    Article  ADS  Google Scholar 

  26. W. Xu, M. Rigol, Phys. Rev. A 92, 063623 (2015)

    Article  ADS  Google Scholar 

  27. V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Nat. Phys. 2, 705 (2006)

    Article  Google Scholar 

  28. L. Mathey, A. Vishwanath, E. Altman, Phys. Rev. A 79, 013609 (2009)

    Article  ADS  Google Scholar 

  29. K. He, M. Rigol, Phys. Rev. A 83, 023611 (2011)

    Article  ADS  Google Scholar 

  30. P. Devillard, D. Chevallier, P. Vignolo, M. Albert, Phys. Rev. A 101, 063604 (2020)

    Article  ADS  Google Scholar 

  31. A. Tenart, G. Herce, J.P. Bureik, A. Dareau, D. Clement, Nat. Phys. 17, 1364 (2021)

    Article  Google Scholar 

  32. M. Olshanii, V. Dunjko, A. Minguzzi, G. Lang, Phys. Rev. A 96, 033624 (2017)

    Article  ADS  Google Scholar 

  33. P. Devillard, A. Benzahi, P. Vignolo, M. Albert, Phys. Rev. A 104, 053306 (2021)

    Article  ADS  Google Scholar 

  34. A. Lenard, J. Math. Phys. 5, 930 (1964)

    Article  ADS  Google Scholar 

  35. P.J. Forrester, N.E. Frankel, T.M. Garoni, N.S. Witte, Phys. Rev. A 67, 043607 (2003)

    Article  ADS  Google Scholar 

  36. I. Lovas, B. Dora, E. Demler, G. Zarand, Phys. Rev. A 95, 053621 (2017)

    Article  ADS  Google Scholar 

  37. I. Lovas, B. Dora, E. Demler, G. Zarand, Phys. Rev. A 95, 023625 (2017)

    Article  ADS  Google Scholar 

  38. V.I. Yukalov, M.D. Girardeau, Laser Phys. Lett. 2, 375 (2005)

    Article  ADS  Google Scholar 

  39. R. Pezer, H. Buljan, Phys. Rev. Lett. 98, 240403 (2007)

    Article  ADS  Google Scholar 

  40. J. Dobrzyniecki, T. Sowinski, Phys. Rev. A 99, 063608 (2019)

    Article  ADS  Google Scholar 

  41. T. Papenbrock, Phys. Rev. A 67, 041601(R) (2003)

    Article  ADS  Google Scholar 

  42. H.G. Vaidya, C.A. Tracy, J. Math. Phys. 20, 2291 (1979)

    Article  ADS  Google Scholar 

  43. D.M. Gangardt, J. Phys. A 37, 9335 (2004)

    Article  ADS  Google Scholar 

  44. C.N. Yang, Rev. Mod. Phys. 34, 694 (1962)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of China under Grants No. 11774026. L.W. is supported by the National Natural Science Foundation of China (Grant Nos. 11404199, 12147215) and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202203021211315, 1331KSC and 2015021012).

Author information

Authors and Affiliations

Authors

Contributions

YZ and YL contribute to the theoretical derivation and calculations. LW contribute to the calculation of R2BDM and natural orbitals.

Corresponding author

Correspondence to Yajiang Hao.

Appendix A

Appendix A

The coefficients of the Toeplitz matrix element of the R3BDM:

$$\begin{aligned} c_0= & {} 1, \\ c_1= & {} e^{ix}+e^{iy}+e^{iz}+e^{ix^{\prime }}\\{} & {} +e^{iy^{\prime }}+e^{iz^{\prime }}, \\ c_2= & {} e^{i(x+y)}+e^{i(x+z)}+e^{i(x+x^{\prime })}\\{} & {} +e^{i(x+y^{\prime })}+e^{i(x+z^{\prime })}+e^{i(y+z)}\\{} & {} +e^{i(y+x^{\prime })}+e^{i(y+y^{\prime })}+e^{i(y+z^{\prime })} \\{} & {} +e^{i(z+x^{\prime })}+e^{i(z+y^{\prime })}\\{} & {} +e^{i(z+z^{\prime })}+e^{i(x^{\prime }+y^{\prime })}\\{} & {} +e^{i(x^{\prime }+z^{\prime })}+e^{i(y^{\prime }+z^{\prime })}, \\ c_3= & {} e^{i(x+y+z)}+e^{i(x+y+x^{\prime })}+e^{i(x+y+y^{\prime })}\\{} & {} +e^{i(x+y+z^{\prime })}\\{} & {} +e^{i(x+z+x^{\prime })}+e^{i(x+z+y^{\prime })}\\{} & {} +e^{i(x+z+z^{\prime })}+e^{i(x+x^{\prime }+y^{\prime })} \\{} & {} +e^{i(x+x^{\prime }+z^{\prime })}+e^{i(x+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(y+z+x^{\prime })}+e^{i(y+z+y^{\prime })}+e^{i(y+z+z^{\prime })}\\{} & {} +e^{i(y+x^{\prime }+y^{\prime })}+e^{i(y+x^{\prime }+z^{\prime })}+e^{i(y+y^{\prime }+z^{\prime })} \\{} & {} +e^{i(z+x^{\prime }+y^{\prime })}+e^{i(z+x^{\prime }+z^{\prime })}+e^{i(z+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(x^{\prime }+y^{\prime }+z^{\prime })}, \\ c_4= & {} e^{i(x+y+z+x^{\prime })}+e^{i(x+y+z+y^{\prime })}+e^{i(x+y+z+z^{\prime })}\\{} & {} +e^{i(x+y+x^{\prime }+y^{\prime })}+e^{i(x+y+x^{\prime }+z^{\prime })}\\{} & {} +e^{i(x+y+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(x+z+x^{\prime }+y^{\prime })}+e^{i(x+z+x^{\prime }+z^{\prime })} \\{} & {} +e^{i(x+z+y^{\prime }+z^{\prime })}+e^{i(x+x^{\prime }+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(y+z+x^{\prime }+y^{\prime })}+e^{i(y+z+x^{\prime }+z^{\prime })} \\{} & {} +e^{i(y+z+y^{\prime }+z^{\prime })}+e^{i(y+x^{\prime }+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(z+x^{\prime }+y^{\prime }+z^{\prime })}, \\ c_5= & {} e^{i(x+y+z+x^{\prime }+y^{\prime })}+e^{i(x+y+z+x^{\prime }+z^{\prime })}\\{} & {} +e^{i(x+y+z+y^{\prime }+z^{\prime })}+e^{i(x+y+x^{\prime }+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(x+z+x^{\prime }+y^{\prime }+z^{\prime })}\\{} & {} +e^{i(y+z+x^{\prime }+y^{\prime }+z^{\prime })}, \\ c_6= & {} e^{i(x+y+z+x^{\prime }+y^{\prime }+z^{\prime })}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Zhang, Y., Liu, Y. et al. n-body correlation of Tonks–Girardeau gas. Eur. Phys. J. D 76, 237 (2022). https://doi.org/10.1140/epjd/s10053-022-00574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00574-5

Navigation