Skip to main content
Log in

Ionization by a strong orthogonal two-color laser field: a quantum-orbit-theory approach

  • Regular Article – Ultraintense and Ultrashort Laser Fields
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A theory of high-order above-threshold ionization (HATI) of atoms is presented and applied to the ionization of inert gases by an orthogonal two-color (OTC) field. The transition matrix element is derived within the strong-field approximation and calculated by numerical integration and the saddle-point method. The atomic bound state is expressed as an expansion in terms of the Slater-type orbitals as well as an asymptotic wave function. The energy and momentum distributions of the HATI electrons are calculated for the \(\omega \)\(2\omega \) and \(\omega \)\(3\omega \) OTC fields. A detailed analysis of the saddle-point solutions and their contribution to the overall differential ionization rate for these two cases is presented. Optimal values of the OTC field parameters for which the ionization rate is maximal in the high-energy region of the photoelectron spectra are found. Special attention is devoted to the symmetry consideration of the photoelectron momentum distributions. All these results are analyzed in detail using the quantum-orbit formalism, which gives a better physical insight into the HATI process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. W. Becker, F. Grasbon, R. Kopold, D.B. Milošević, G.G. Paulus, H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002)

    Article  ADS  Google Scholar 

  2. D.B. Milošević, F. Ehlotzky, Adv. At. Mol. Opt. Phys. 49, 373 (2003)

    Article  ADS  Google Scholar 

  3. P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

    Article  ADS  Google Scholar 

  4. A. Becker, F.H.M. Faisal, J. Phys. B 38, R1 (2005)

    Article  ADS  Google Scholar 

  5. A. Scrinzi, M.Yu. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B 39, R1 (2006)

  6. M. Lein, J. Phys. B 40, R135 (2007)

    Article  ADS  Google Scholar 

  7. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  8. M. Nisoli, G. Sansone, Prog. Quantum Electron. 33, 17 (2009)

    Article  ADS  Google Scholar 

  9. P. Agostini, L.F. DiMauro, Adv. At. Mol. Opt. Phys. 61, 117 (2012)

    Article  ADS  Google Scholar 

  10. W. Becker, X.J. Liu, P.J. Ho, J.H. Eberly, Rev. Mod. Phys. 84, 1011 (2012)

    Article  ADS  Google Scholar 

  11. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  12. M. Smolarski, P. Eckle, U. Keller, R. Dörner, Opt. Express 18, 17640 (2010)

    Article  ADS  Google Scholar 

  13. D.B. Milošević, Phys. Rev. A 96, 023413 (2017)

    Article  ADS  Google Scholar 

  14. V. Tulsky, D. Bauer, Comput. Phys. Commun. 251, 107098 (2020)

    Article  Google Scholar 

  15. B. Fetić, D.B. Milošević, Phys. Rev. E 95, 053309 (2017)

    Article  ADS  Google Scholar 

  16. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G.G. Paulus, H. Walther, R. Kopold, W. Becker, D.B. Milošević, A. Sanpera, M. Lewenstein, Science 292, 902 (2001)

    Article  ADS  Google Scholar 

  17. R. Kopold, D.B. Milošević, W. Becker, Phys. Rev. Lett. 84, 3831 (2000)

    Article  ADS  Google Scholar 

  18. D.B. Milošević, D. Bauer, W. Becker, J. Mod. Opt. 53, 125 (2006)

    Article  ADS  Google Scholar 

  19. D.B. Milošević, W. Becker, Phys. Rev. A 93, 063418 (2016)

    Article  ADS  Google Scholar 

  20. A. Jašarević, E. Hasović, R. Kopold, W. Becker, D.B. Milošević, J. Phys. A 53, 125201 (2020)

    Article  ADS  Google Scholar 

  21. M.D. Perry, J.K. Crane, Phys. Rev. A 48, R4051(R) (1993)

    Article  ADS  Google Scholar 

  22. I.J. Kim, C.M. Kim, H.T. Kim, G.H. Lee, Y.S. Lee, J.Y. Park, D.J. Cho, C.H. Nam, Phys. Rev. Lett. 94, 243901 (2005)

    Article  ADS  Google Scholar 

  23. L. Brugnera, D.J. Hoffmann, T. Siegel, F. Frank, A. Zair, J.W.G. Tisch, J.P. Marangos, Phys. Rev. Lett. 107, 153902 (2011)

    Article  ADS  Google Scholar 

  24. H. Niikura, H.J. Wörner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 107, 093004 (2011)

    Article  ADS  Google Scholar 

  25. A.S. Emelina, Yu.M. Emelin, R.A. Ganeev, M. Suzuki, H. Kuroda, V.V. Strelkov, Opt. Express 24, 13971 (2016)

  26. D. Shafir, H. Soifer, B.D. Bruner, M. Dagan, Y. Mairesse, S. Patchkovskii, M.Y. Ivanov, O. Smirnova, N. Dudovich, Nature (London) 485, 343 (2012)

    Article  ADS  Google Scholar 

  27. H. Niikura, N. Dudovich, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 105, 053003 (2010)

    Article  ADS  Google Scholar 

  28. T.S. Sarantseva, M.V. Frolov, N.L. Manakov, M.Yu. Ivanov, A.F. Starace, J. Phys. B 46, 231001 (2013)

  29. C. Zhai, X. Zhang, X. Zhu, L. He, Y. Zhang, B. Wang, Q. Zhang, P. Lan, P. Lu, Opt. Express 26, 2775 (2018)

    Article  ADS  Google Scholar 

  30. E. Bordo, O. Neufeld, O. Kfir, A. Fleischer, O. Cohen, Phys. Rev. A 100, 043419 (2019)

    Article  ADS  Google Scholar 

  31. G. Lambert, B. Vodungbo, J. Gautier, B. Mahieu, V. Malka, S. Sebban, P. Zeitoun, J. Luning, J. Perron, A. Andreev, S. Stremoukhov, F. Ardana-Lamas, A. Dax, C.P. Hauri, A. Sardinha, M. Fajardo, Nat. Commun. 6, 6167 (2015)

    Article  ADS  Google Scholar 

  32. S.M. Njoroge, H. Yuan, K. Dickson, Q. Zhang, P. Lan, Sci. Rep. 9, 18582 (2019)

    Article  ADS  Google Scholar 

  33. M. Kitzler, M. Lezius, Phys. Rev. Lett. 95, 253001 (2005)

    Article  ADS  Google Scholar 

  34. M. Kitzler, K. O’Keeffe, M. Lezius, J. Mod. Opt. 53, 57 (2006)

    Article  ADS  Google Scholar 

  35. M. Han, P. Ge, Y. Shao, M.-M. Liu, Y. Deng, C. Wu, Q. Gong, Y. Liu, Phys. Rev. Lett. 119, 073201 (2017)

    Article  ADS  Google Scholar 

  36. X. Xie, T. Wang, S.G. Yu, X.Y. Lai, S. Roither, D. Kartashov, A. Baltuška, X.J. Liu, A. Staudte, M. Kitzler, Phys. Rev. Lett. 119, 243201 (2017)

    Article  ADS  Google Scholar 

  37. J.-H. Chen, M. Han, X.-R. Xiao, L.-Y. Peng, Y. Liu, Phys. Rev. A 98, 033403 (2018)

    Article  ADS  Google Scholar 

  38. M. Richter, M. Kunitski, M. Schöffler, T. Jahnke, L.P.H. Schmidt, M. Li, Y. Liu, R. Dörner, Phys. Rev. Lett. 114, 143001 (2015)

    Article  ADS  Google Scholar 

  39. X. Xie, Phys. Rev. Lett. 114, 173003 (2015)

    Article  ADS  Google Scholar 

  40. J. Henkel, M. Lein, Phys. Rev. A 92, 013422 (2015)

    Article  ADS  Google Scholar 

  41. J.-W. Geng, W.-H. Xiong, X.-R. Xiao, L.-Y. Peng, Q. Gong, Phys. Rev. Lett. 115, 193001 (2015)

    Article  ADS  Google Scholar 

  42. M. Li, J.-W. Geng, M.-M. Liu, X. Zheng, L.-Y. Peng, Q. Gong, Y. Liu, Phys. Rev. A 92, 013416 (2015)

    Article  ADS  Google Scholar 

  43. M. He, Y. Li, Y. Zhou, M. Li, P. Lu, Phys. Rev. A 93, 033406 (2016)

    Article  ADS  Google Scholar 

  44. J. Tan, Y. Zhou, M. He, Y. Chen, Q. Ke, J. Liang, X. Zhu, M. Li, P. Lu, Phys. Rev. Lett. 121, 253203 (2018)

    Article  ADS  Google Scholar 

  45. J. Tan, Y. Zhou, M. He, Q. Ke, J. Liang, Y. Li, M. Li, P. Lu, Phys. Rev. A 99, 033402 (2019)

    Article  ADS  Google Scholar 

  46. M. Han, P. Ge, M.-M. Liu, Q. Gong, Y. Liu, Phys. Rev. A 99, 023404 (2019)

    Article  ADS  Google Scholar 

  47. F. Gao, Y.J. Chen, G.G. Xin, J. Liu, L.B. Fu, Phys. Rev. A 96, 063414 (2017)

    Article  ADS  Google Scholar 

  48. M.-M. Liu, M. Han, P. Ge, C. He, Q. Gong, Y. Liu, Phys. Rev. A 97, 063416 (2018)

    Article  ADS  Google Scholar 

  49. P.V. Demekhin, A.N. Artemyev, A. Kastner, T. Baumert, Phys. Rev. Lett. 121, 253201 (2018)

    Article  ADS  Google Scholar 

  50. D. Habibović, A. Gazibegović-Busuladžić, M. Busuladžić, A. Čerkić, D.B. Milošević, Phys. Rev. A 102, 023111 (2020)

    Article  ADS  Google Scholar 

  51. Q. Song, P. Lu, X. Gong, Q. Ji, K. Lin, W. Zhang, J. Ma, H. Zeng, J. Wu, Phys. Rev. A 95, 013406 (2017)

    Article  ADS  Google Scholar 

  52. J.H. Mun, H. Sakai, R. González-Férez, Phys. Rev. A 99, 053424 (2019)

    Article  ADS  Google Scholar 

  53. D. Habibović, W. Becker, D.B. Milošević, J. Phys. B 54, 134004 (2021)

    Article  ADS  Google Scholar 

  54. D. Habibović, D.B. Milošević, Photonics 7, 110 (2020)

    Article  Google Scholar 

  55. D.B. Milošević, G.G. Paulus, D. Bauer, W. Becker, J. Phys. B 39, R203 (2006)

    Article  ADS  Google Scholar 

  56. W. Becker, S.P. Goreslavski, D.B. Milošević, G.G. Paulus, J. Phys. B 51, 162002 (2018)

    Article  ADS  Google Scholar 

  57. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer, Berlin, 1985)

    Book  Google Scholar 

  58. D. Zille, D. Seipt, M. Möller, S. Fritzsche, G.G. Paulus, D.B. Milošević, Phys. Rev. A 95, 063408 (2017)

    Article  ADS  Google Scholar 

  59. D.B. Milošević, J. Phys. B 50, 164003 (2017)

    Article  ADS  Google Scholar 

  60. A.E.S. Green, D.E. Rio, T. Ueda, Phys. Rev. A 24, 3010 (1981)

    Article  ADS  Google Scholar 

  61. D.B. Milošević, E. Hasović, M. Busuladžić, A. Gazibegović-Busuladžić, W. Becker, Phys. Rev. A 76, 053410 (2007)

    Article  ADS  Google Scholar 

  62. D.B. Milošević, Phys. Rev. A 90, 063414 (2014)

    Article  ADS  Google Scholar 

  63. W. Becker, S.P. Goreslavski, D.B. Milošević, G.G. Paulus, J. Phys. B 47, 204022 (2014)

    Article  ADS  Google Scholar 

  64. C. Figueira de Morisson Faria, H. Schomerus, W. Becker, Phys. Rev. A 66, 043413 (2002)

    Article  ADS  Google Scholar 

  65. R. Kopold, W. Becker, M. Kleber, Opt. Commun. 179, 39 (2000)

    Article  ADS  Google Scholar 

  66. S.V. Popruzhenko, J. Phys. B 47, 204001 (2014)

    Article  ADS  Google Scholar 

  67. W. Becker, D.B. Milošević, Phys. Chem. Chem. Phys. 24, 7014 (2022)

    Article  Google Scholar 

  68. O. Neufeld, D. Podolsky, O. Cohen, Nat. Commun. 10, 405 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Ministry for Science, Higher Education and Youth Canton Sarajevo, Bosnia and Herzegovina.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to D. B. Milošević.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jašarević, A.S., Hasović, E. & Milošević, D.B. Ionization by a strong orthogonal two-color laser field: a quantum-orbit-theory approach. Eur. Phys. J. D 76, 240 (2022). https://doi.org/10.1140/epjd/s10053-022-00569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00569-2

Navigation