Skip to main content

Ultra-relativistic electron beams deflection by quasi-mosaic crystals

Abstract

This paper provides an explanation of the key effects behind the deflection of ultra-relativistic electron beams by means of oriented ‘quasi-mosaic’ Bent Crystals (qmBC). It is demonstrated that accounting for specific geometry of the qmBC and its orientation with respect to a collimated electron beam, its size and emittance is essential for an accurate quantitative description of experimental results on the beam deflection by such crystals. In an exemplary case study, a detailed analysis of the recent experiment at the SLAC facility is presented. The methodology developed has enabled to understand the peculiarities in the measured distributions of the deflected electrons. Also, this achievement constitutes an important progress in the efforts toward the practical realization of novel gamma-ray crystal-based light sources and puts new challenges for the theory and experiment in this research area.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated are included into this published article. The data presented in this manuscript can be available upon reasonable request to the authors.]

Notes

  1. The quoted value of \(\theta _{\textrm{L}}\) is calculated in Ref. [8] using the Doyle-Turner potential [23]. It corresponds to the crystal temperature \(T=300\) K. The results of simulations presented in our paper refer to the same temperature.

References

  1. A.V. Korol, A.V. Solov’yov, Crystal-based intensive gamma-ray light sources. Eur. Phys. J. D. 74, 201 (2020)

    Article  ADS  Google Scholar 

  2. A.V. Korol, A.V. Solov’yov, All-atom relativistic molecular dynamics simulations of channeling and radiation processes in oriented crystals. Eur. Phys. J. D. 75, 207 (2021)

    Article  Google Scholar 

  3. M. Krasny, The gamma factory proposal for CERN. CERN Proc. 1, 249 (2018)

    Google Scholar 

  4. http://www.mbnresearch.com/N-Light/main

  5. TECHNO-CLS project (GA: 101046458) within the HORIZON-EIC Framework

  6. A.V. Korol, A.V. Solov’yov, W. Greiner, Channeling and Radiation in Periodically Bent Crystals, 2nd edn. (Springer-Verlag, Berlin, Heidelberg, 2014)

    Book  Google Scholar 

  7. A. Mazzolari, E. Bagli, L. Bandiera, V. Guidi, H. Backe, W. Lauth, V. Tikhomirov, A. Berra, D. Lietti, M. Prest, E. Vallazza, D. De Salvador, Steering of a sub-GeV electron beam through planar channeling enhanced by rechanneling. Phys. Rev. Lett. 112, 135503 (2014)

    Article  ADS  Google Scholar 

  8. U. Wienands, T.W. Markiewicz, J. Nelson, R.J. Noble, J.L. Turner, U.I. Uggerhøj, T.N. Wistisen, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, A. Mazzolari, R. Holtzapple, M. Miller, Observation of deflection of a beam of multi-GeV electrons by a thin crystal. Phys. Rev. Lett. 114, 074801 (2015)

    Article  ADS  Google Scholar 

  9. L. Bandiera, E. Bagli, G. Germogli, V. Guidi, A. Mazzolari, H. Backe, W. Lauth, A. Berra, D. Lietti, M. Prest, D. De Salvador, E. Vallazza, V. Tikhomirov, Investigation of the electromagnetic radiation emitted by sub-GeV electrons in a bent crystal. Phys. Rev. Lett. 115, 025504 (2015)

    Article  ADS  Google Scholar 

  10. L. Bandiera, E. Bagli, V. Guidi, A. Mazzolari, A. Berra, D. Lietti, M. Prest, E. Vallazza, D. De Salvador, V. Tikhomirov, Broad and intense radiation accompanying multiple volume reflection of ultrarelativistic electrons in a bent crystal. Phys. Rev. Lett. 111, 255502 (2013)

    Article  ADS  Google Scholar 

  11. A. Mazzolari, M. Romagnoni, R. Camattari, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, G. Cavoto, Bent crystals for efficient beam steering of multi TeV-particle beams. Eur. Phys. J. C. 78, 720 (2018)

    Article  ADS  Google Scholar 

  12. A.I. Sytov, V. Guidi, V.V. Tikhomirov, E. Bagli, L. Bandiera, G. Germogli, A. Mazzolari, Planar channeling and quasichanneling oscillations in a bent crystal. Eur. Phys. J. C. 76, 77 (2016)

    Article  ADS  Google Scholar 

  13. T.N. Wistisen, U.I. Uggerhøj, U. Wienands, T.W. Markiewicz, R.J. Noble, B.C. Benson, T. Smith, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, A. Mazzolari, R. Holtzapple, S. Tucker, Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal. Phys. Rev. Acc. Beams. 19, 071001 (2016)

    Article  ADS  Google Scholar 

  14. V. Guidi, A. Mazzolari, D. De Salvador, A. Carnera, Silicon crystal for channelling of negatively charged particles. J. Phys. D: Appl. Phys. 42, 182005 (2009)

    Article  ADS  Google Scholar 

  15. R. Camattari, V. Guidi, V. Bellucci, A. Mazzolari, The quasi-mosaic effect in crystals and its application in modern physics. J. Appl. Cryst. 48, 977 (2015)

    Article  Google Scholar 

  16. A. Mazzolari, M. Romagnoni, R. Camattari, E. Bagli, L. Bandiera, G. Germogli, V. Guidi, G. Cavoto, R. Camattari, V. Guidi, V. Bellucci, A. Mazzolari, Bent crystals for efficient beam steering of multi TeV-particle beams. Eur. Phys. J. C. 78, 720 (2018)

    Article  ADS  Google Scholar 

  17. S. Lekhnitskii, Theory of Elasticity of an Anisotropic Body (Mir Publishers, Moscow, 1981)

    MATH  Google Scholar 

  18. O.I. Sumbaev, Reflection of gamma-rays from bent quartz plates. JETP. 5, 1042 (1957)

    Google Scholar 

  19. Y. Ivanov, A. Petrunin, V. Skorobogatov, Observation of the elastic quasi-mosaicity effect in bent silicon single crystals. JETP Lett. 81, 977 (2005)

    Article  Google Scholar 

  20. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1–64 (1965)

    Google Scholar 

  21. A.M. Taratin, S.A. Vorobiev, Volume trapping of protons in the channeling regime in a bent crystal. Phys. Lett. 115, 398 (1986)

    Article  Google Scholar 

  22. A.M. Taratin, S.A. Vorobiev, Volume reflection of high-energy charged particles in quasi-channeling states in bent crystals. Phys. Lett. 119, 425 (1987)

    Article  Google Scholar 

  23. P.A. Doyle, P.S. Turner, Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Cryst. A. 24, 390–397 (1968)

    Article  Google Scholar 

  24. I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, MesoBioNano explorer—a universal program for multiscale computer simulations of complex molecular structure and dynamics. J. Comp. Phys. 33, 2412 (2012)

    Google Scholar 

  25. G.B. Sushko, V.G. Bezchastnov, I.A. Solov’yov, A.V. Korol, W. Greiner, A.V. Solov’yov, Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN explorer. J. Comp. Phys. 252, 404 (2013)

    Article  ADS  MATH  Google Scholar 

  26. I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, 2017)

    Book  Google Scholar 

  27. G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, Modeling MesoBioNano systems with MBN Studio made easy. J. Mol. Graph. Model. 88, 247 (2019)

    Article  Google Scholar 

  28. E. Bagli, V. Guidi, DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures. Nucl. Instrum. Methods B. 309, 124 (2013)

    Article  ADS  Google Scholar 

  29. V.V. Tikhomirov, Quantum features of high energy particle incoherent scattering in crystals. Phys. Rev. Accel. Beams 22, 054501 (2019) (Erratum: Phys. Rev. Accel. Beams 23, 039901 (2020))

Download references

Funding

The work was supported in part by the DFG Grant (Project No. 413220201) and by the H2020 RISE-NLIGHT project (GA 872196). We acknowledge helpful discussions with Andrea Mazzolari, Vincenzo Guidi, Hartmut Backe and Werner Lauth. Frankfurt Center for Scientific Computing (CSC) is acknowledged for providing computer facilities. We are grateful to the anonymous referee for constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Andrey V. Solov’yov.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushko, G.B., Korol, A.V. & Solov’yov, A.V. Ultra-relativistic electron beams deflection by quasi-mosaic crystals. Eur. Phys. J. D 76, 236 (2022). https://doi.org/10.1140/epjd/s10053-022-00567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00567-4