Skip to main content
Log in

A computational study of Aln and Aln−1Pt clusters: the effects of doping and a uniform tuning gauge for single-atom nanocatalysts

  • Regular Article – Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Results of density functional theory calculations on Aln and Aln−1Pt, n = 2–8, clusters are presented and analyzed. The analysis includes different structural forms of the clusters characterized in terms of binding energy, spin and symmetry, and a comparative evaluation of various properties of the two systems viewed as connected through a single-Pt substitutional doping and examined in terms of their respective most stable structures. The Aln−1Pt clusters are then used as a paradigmatic (model) case of single-atom nanocatalysts, with Pt as the catalytic center and Aln−1 as its support, to implement a uniform descriptor for gauging the tuning effects of all the parameters (“knobs”) of a nanocatalyst that include the identity of the active center and the material and size of its support.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material. The online version of this article contains supplementary material, which is available to authorized users.

References

  1. Nanoalloys: From Theory to Applications. Faraday Discussions No 138 (RCS Publishing, Cambridge, 2008).

  2. R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008)

    Article  Google Scholar 

  3. M.M. Mariscal, O.A. Oviedo, E.P. Leiva (eds.), Metal Clusters and Nanoalloys—From Modeling to Applications (Springer, New York, 2016)

    Google Scholar 

  4. F. Calvo (ed.), Nanoalloys—From Fundamentals to Emergent Applications, 2nd edn. (Elsevier, Amsterdam, 2020)

    Google Scholar 

  5. P.H. Acioli, J. Jellinek, Theoretical analysis of photoelectron spectra of pure and mixed metal clusters: disentangling size, structure and composition effects. J. Phys. Chem. C 121, 16665–16672 (2017)

    Article  Google Scholar 

  6. J. Jellinek, Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discuss. 138, 11–35 (2008)

    Article  ADS  Google Scholar 

  7. P.H. Acioli, X. Zhang, K.H. Bowen Jr., J. Jellinek, Electron binding energy spectra of AlnPt clusters—a combined experimental and computational study. J. Phys. Chem. A 126, 4241–4247 (2022)

    Article  Google Scholar 

  8. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A At. Mol. Opt. Phys. 38, 3098–3100 (1988)

    Article  ADS  Google Scholar 

  9. J.P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 33, 8822–8824 (1986)

    Article  ADS  Google Scholar 

  10. N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation. Can. J. Chem. 70, 560–571 (1992)

    Article  Google Scholar 

  11. C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds. J. Phys. Chem. 96, 6630–6636 (1992)

    Article  Google Scholar 

  12. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chem. Acc. 77, 123–141 (1990)

    Article  Google Scholar 

  13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant et al., Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, 2004)

    Google Scholar 

  14. J. Jellinek, E.B. Krissinel, NinAlm alloy clusters: analysis of structural forms and their energy ordering. Chem. Phys. Lett. 258, 283–292 (1996)

    Article  ADS  Google Scholar 

  15. K.J. Taylor, C.L. Pettiette, M.J. Craycraft, O. Chesnovsky, R.E. Smalley, Ups of negative aluminum clusters. Chem. Phys. Lett. 152, 347–352 (1988)

    Article  ADS  Google Scholar 

  16. G. Ganteför, M. Gausa, K.-H. Meiwes-Broer, H.O. Lutz, Ultraviolet photodetachment spectroscopy on jet-cooled metal-cluster anions. Faraday Discuss. Chem. Soc. 86, 197–208 (1988)

    Article  Google Scholar 

  17. U. Ray, M.F. Jarrold, J.E. Bower, J.S. Kraus, Photodissociation kinetics of aluminum cluster ions: determination of cluster dissociation energies. J. Chem. Phys. 91, 2912–2921 (1989)

    Article  ADS  Google Scholar 

  18. C.-Y. Cha, G. Ganteför, W. Eberhardt, The development of the 3p and 4p valence band of small aluminum and gallium clusters. J. Chem. Phys. 100, 985–1010 (1994)

    Article  ADS  Google Scholar 

  19. X. Li, H. Wu, X.-B. Wang, L.-S. Wang, s-p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopy study. Phys. Rev. Lett. 81, 1909–1912 (1998)

    Article  ADS  Google Scholar 

  20. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, L.-S. Wang, Photoelectron spectra of aluminum cluster anions: temperature effects and ab initio simulations. Phys. Rev. B 60, R11297–R11300 (1999)

    Article  ADS  Google Scholar 

  21. G.D. Geske, A.I. Boldyrev, X. Li, L.-S. Wang, On the origin of planarity in Al5 and Al5 clusters: the importance of a four-center peripheral bond. J. Chem. Phys. 113, 5130–5133 (2000)

    Article  ADS  Google Scholar 

  22. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, L.-S. Wang, Aluminum cluster anions: photoelectron spectroscopy and ab initio simulations. Phys. Rev. B 62, 13216–13228 (2000)

    Article  ADS  Google Scholar 

  23. L. Ma, B. von Issendorff, A. Aguado, Photoelectron spectroscopy of cold aluminum cluster anions: comparison with density functional theory results. J. Chem. Phys. 132, 104303 (2010)

    Article  ADS  Google Scholar 

  24. J.J. Melko, A.W. Castleman Jr., Photoelectron imaging of small aluminum clusters: quantifying s–p hybridization. Phys. Chem. Chem. Phys. 15, 3173–3178 (2013)

    Article  Google Scholar 

  25. B. Kafle, V. Chandrasekaran, O. Heber, M.L. Rappaport, H. Rubenstein, D. Schwalm, D. Strasser, D. Zajfman, Electron detachment and fragmentation of laser-excited rotationally hot Al4. Phys. Rev. A 92, 052503 (2015)

    Article  ADS  Google Scholar 

  26. A. Rubio, L.C. Balbas, J.A. Alonso, Electronic structure of negatively charged aluminium clusters. Phys. B 1991(168), 32–38 (1991)

    Article  ADS  Google Scholar 

  27. B.K. Rao, P. Jena, Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111, 1890–1904 (1999)

    Article  ADS  Google Scholar 

  28. O. Dolgounitcheva, V.G. Zakrzewski, J.V. Ortiz, Ground state and vertical electron detachment energies of icosahedral and D5h Al13. J. Chem. Phys. 111, 10762–10765 (1999)

    Article  ADS  Google Scholar 

  29. N. Drebov, R. Ahlrichs, Structures of Aln, its anions and cations up to n=34: a theoretical investigation. J. Chem. Phys. 132, 164703 (2010)

    Article  ADS  Google Scholar 

  30. L. Candido, J.N. Teixeira Rabelo, J.L.F. Da Silva, G.-Q. Hai, Quantum Monte Carlo study of small aluminum clusters Aln(n=2–13). Phys. Rev. B 85, 245404 (2012)

    Article  ADS  Google Scholar 

  31. S. Paranthaman, K. Hong, J. Kim, D.E. Kim, T.K. Kim, Density functional theory assessment of molecular structures and energies of neutral and anionic Aln (n=2-10) clusters. J. Phys. Chem. A 2013(117), 9293–9303 (2013)

    Article  Google Scholar 

  32. L.-P. Tan, D. Die, B.-X. Zheng, Growth mechanism, electronic properties and spectra of aluminum clusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 267, 120545 (2022)

    Article  Google Scholar 

  33. X. Zhang, G. Ganteför, K.H. Bowen Jr., A.N. Alexandrova, The PtAl and PtAl2 anions: theoretical and photoelectron spectroscopic characterization. J. Chem. Phys. 140, 164316 (2014)

    Article  ADS  Google Scholar 

  34. W.P. Wijesundera, Theoretical study of the negative ions of boron, aluminum, gallium, indium, and thallium. Phys. Rev. A 55, 1785–1791 (1997)

    Article  ADS  Google Scholar 

  35. S.S. Ray, R.K. Chaudhuri, S. Chattopadhyay, Communication: viewing the ground and excited electronic structures of platinum and its ion through the window of relativistic coupled cluster method. J. Chem. Phys. 146, 011102 (2017)

    Article  ADS  Google Scholar 

  36. J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer III., S. Nandi, B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102, 231–282 (2002)

    Article  Google Scholar 

  37. M. Scheer, R.C. Bilodeau, J. Thogersen, H.K. Haugen, Threshold photodetachment of Al: electron affinity and fine structure. Phys. Rev. A 57, R1493–R1496 (1998)

    Article  ADS  Google Scholar 

  38. C.E. Moore, Atomic Energy Levels: As Derived from the Analyses of Optical Spectra, Vol II 24Cr-41Nb (Natl. Bur. Stand. Circ. 467, US GPO, Washington, D.C., 1949, 1952)

  39. H. Hotop, W.C. Lineberger, Binding energies in atomic negative ions: II. J. Phys. Chem. Ref. Data 1985(14), 731–750 (1985)

    Article  ADS  Google Scholar 

  40. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  Google Scholar 

  41. J. Jellinek, P.H. Acioli, Converting Kohn–Sham eigenenergies into electron binding energies. J. Chem. Phys. 118, 7783 (2003)

    Article  ADS  Google Scholar 

  42. A.E. Reed, F. Weinhold, natural bond orbital analysis of near-Hartree–Fock water dimer. J. Chem. Phys. 78, 4066–4073 (1983)

    Article  ADS  Google Scholar 

  43. A.E. Reed, R.B. Weinstock, F. Weinhold, Natural population analysis. ibid. 83, 735–746 (1985)

  44. X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013)

    Article  Google Scholar 

  45. B. Hammer, J.K. Norskov, Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995)

    Article  ADS  Google Scholar 

  46. B. Hammer, J.K. Norskov, Theoretical surface science and catalysis—calculations and concepts. Adv. Cat. 45, 71–129 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The work at Argonne was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Contract No. DE-AC02-06CH11357 (J.J.) This research used in part the resources of the National Energy Research Scientific Computing Center (NERSC) supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the paper.

Corresponding author

Correspondence to Julius Jellinek.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acioli, P.H., Jellinek, J. A computational study of Aln and Aln−1Pt clusters: the effects of doping and a uniform tuning gauge for single-atom nanocatalysts. Eur. Phys. J. D 76, 230 (2022). https://doi.org/10.1140/epjd/s10053-022-00556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00556-7

Navigation