Skip to main content
Log in

Ultrastrong Purcell enhancement of magnetic dipole emission based on quasi-BIC

  • Regular Article – Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Here, we propose a hollow quasi-periodic spoof plasmonic structure to realize the ultrastrong Purcell enhancement of magnetic dipole emission in terahertz frequency range based on quasi-bound states in the continuum. By independently tuning the substructures, we can severally tune the responses of the electric dipole and quadripolar modes supported by groove-substructure, and the magnetic dipolar mode supported in slit-substructure. In particular, we also observe a whispering gallery mode supported by the composite structure, which will move with changing structural parameters. When the magnetic dipole mode close to the whispering gallery mode, the interference between them will emerge to generates a quasi-bound state in the continuum with ultra-high quality factor. Then, based on the quasi-periodic structure, we put a magnetic dipole into the hollow structure center and realize the ultrastrong Purcell enhancement of magnetic dipole emission, which can be more than 105. The designed structure can be applied to a variety of magneto-optical devices to greatly enhance Purcell effect in terahertz region.

Graphical Abstract

Manipulating the spontaneous emission rate of magnetic dipole with artificial magnetic resonators have been widely investigated to provide the road toward novel magnetic light-matter interactions. However, the emission strength of magnetic dipole still an open challenge due to the lack of high-quality factor cavity with magnetic dipole resonance. Here, we propose a hollow quasi-periodic spoof plasmonic structure to realize the ultrastrong Purcell enhancement of magnetic dipole emission in terahertz frequency range based on quasi-BIC as shown in (a). By independently tuning the substructures, we can severally tune the responses of the electric dipole and quadripolar modes supported by groove-substructure, and the magnetic dipolar mode supported in slit-substructure. Particularly, when the magnetic dipole close to the electric quadrupole, the interference between the magnetic dipolar mode as a bright one and electric quadrupolar modes as a dark one in the quasi-structure can generate a sharp Fano resonance with high quality factor. When we put a magnetic dipole into the structure center and realize the ultrastrong Purcell enhancement of magnetic dipole emission, which can be more than 105 as Figure (b). The designed structure can be applied to a variety of magneto-optical devices to greatly enhance magnetic Purcell effect in terahertz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. S. Karaveli, R. Zia, Spectral tuning by selective enhancement of electric and magnetic dipole emission. Phys. Rev. Lett. 106(19), 193004 (2011)

    Article  ADS  Google Scholar 

  2. R. Hussain, S.S. Kruk, C.E. Bonner, M.A. Noginov, I. Staude, Y.S. Kivshar, N. Noginova, D.N. Neshev, Enhancing Eu 3+ magnetic dipole emission by resonant plasmonic nanostructures. Opt. Lett. 40(8), 1659–1662 (2015)

    Article  ADS  Google Scholar 

  3. J. Xiang, J.D. Chen, S. Lan, A.E. Miroshnichenko, Nanoscale optical display and sensing based on the modification of Fano lineshape. Adv. Opt. Mater. 8(16), 2000489 (2020)

    Article  Google Scholar 

  4. J.Q. Li, N. Verellen, P.V. Dorpe, Engineering electric and magnetic dipole coupling in arrays of dielectric nanoparticles. J. Appl. Phys. 123(8), 083101 (2018)

    Article  ADS  Google Scholar 

  5. N. Bontempi, K.E. Chong, H.W. Orton, I. Staude, D.Y. Choi, I. Alessandri, Y.S. Kivshar, D.N. Neshev, Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 9(15), 4972–4980 (2017)

    Article  Google Scholar 

  6. R. Terawaki, Y. Takahashi, M. Chihara, Y. Inui, S. Noda, Ultrahigh-Q photonic crystal nanocavities in wide optical telecommunication bands. Opt. Express 20(20), 22743–22752 (2012)

    Article  ADS  Google Scholar 

  7. S. AbdollahRamezani, K. Arik, A. Khavasi, Z. Kavehvash, Analog computing using graphene-based metalines. Opt. Lett. 40(22), 5239–5242 (2015)

    Article  ADS  Google Scholar 

  8. S. AbdollahRamezani, K. Arik, S. Farajollahi, A. Khavasi, Z. Kavehvash, Beam manipulating by gate-tunable graphene-based metasurfaces. Opt. Lett. 40(22), 5383–5386 (2015)

    Article  ADS  Google Scholar 

  9. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4(1), 1–6 (2013)

    Article  Google Scholar 

  10. G.M. Akselrod, C. Argyropoulos, T.B. Hoang, C. Ciracì, C. Fang, J.N. Huang, D.R. Smith, M.H. Mikkelsen, Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 8(11), 835–840 (2014)

    Article  ADS  Google Scholar 

  11. W. Wei, X. Yan, X. Zhang, Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity. Sci. Rep. 6(1), 1–7 (2016)

    Google Scholar 

  12. S.R. Joy, M. Erementchouk, P. Mazumder, Spoof surface plasmon resonant tunneling mode with high quality and Purcell factors. Phys. Rev. B 95(7), 075435 (2017)

    Article  ADS  Google Scholar 

  13. W. Liu, A.E. Miroshnichenko, R.F. Oulton, D.N. Neshev, O. Hess, Y.S. Kivshar, Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 38(14), 2621–2624 (2013)

    Article  ADS  Google Scholar 

  14. Z.G. Dong, H. Liu, M.X. Xu, T. Li, S.M. Wang, S.N. Zhu, X. Zhang, Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Opt. Express 18(17), 18229–18234 (2010)

    Article  ADS  Google Scholar 

  15. B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, H.T. Miyazaki, Selective plasmonic enhancement of electric-and magnetic-dipole radiations of Er ions. Nano Lett. 16(8), 5191–5196 (2016)

    Article  ADS  Google Scholar 

  16. S.M. Hein, H. Giessen, Tailoring magnetic dipole emission with plasmonic split-ring resonators. Phys. Rev. Lett. 111(2), 026803 (2013)

    Article  ADS  Google Scholar 

  17. T.H. Feng, Y. Xu, Z.X. Liang, W. Zhang, All-dielectric hollow nanodisk for tailoring magnetic dipole emission. Opt. Lett. 41(21), 5011–5014 (2016)

    Article  ADS  Google Scholar 

  18. M. Sanz-Paz, C. Ernandes, J.U. Esparza, G.W. Burr, N.F. Hulst, A. Maitre, L. Aigouy, T. Gacoin, N. Bonod, M.F. Garcia-Parajo, S. Bidault, M. Mivelle, Enhancing magnetic light emission with all-dielectric optical nanoantennas. Nano Lett. 18(6), 3481–3487 (2018)

    Article  ADS  Google Scholar 

  19. J.Q. Li, N. Verellen, P.V. Dorpe, Enhancing magnetic dipole emission by a nano-doughnut-shaped silicon disk. ACS Photonics 4(8), 1893–1898 (2017)

    Article  Google Scholar 

  20. P. Albella, M.A. Poyli, M.K. Schmidt, S.A. Maier, F. Moreno, J.J. Sáenz, J. Aizpurua, Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. Phys. Chem. C 117(26), 13573–13584 (2013)

    Article  Google Scholar 

  21. D.G. Baranov, R.S. Savelev, S.V. Li, A.E. Krasnok, A. Alù, Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photon. Rev. 11(3), 1600268 (2017)

    Article  ADS  Google Scholar 

  22. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12(7), 3749–3755 (2012)

    Article  ADS  Google Scholar 

  23. E. Lee, I.C. Seo, H.Y. Jeong, S.C. An, Y.C. Jun, Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators. Sci. Rep. 7(1), 1–10 (2017)

    Google Scholar 

  24. H. Mi, L. Wang, Y.P. Zhang, G.T. Zhao, R.B. Jiang, Control of the emission from electric and magnetic dipoles by gold nanocup antennas. Opt. Express 27(10), 14221–14230 (2019)

    Article  ADS  Google Scholar 

  25. H.W. Wu, Y.Z. Han, H.J. Chen, Y. Zhou, X.C. Li, J. Gao, Z.Q. Sheng, Physical mechanism of order between electric and magnetic dipoles in spoof plasmonic structures. Opt. Lett. 42(21), 4521–4524 (2017)

    Article  ADS  Google Scholar 

  26. H.W. Wu, H.J. Chen, H.F. Xu, R.H. Fan, Y. Li, Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure. Sci. Rep. 8(1), 1–8 (2018)

    ADS  Google Scholar 

  27. H.W. Wu, Y. Li, H.J. Chen, Z.Q. Sheng, H. Jing, R.H. Fan, R.W. Peng, Strong Purcell effect for terahertz magnetic dipole emission with spoof plasmonic structure. ACS Appl. Nano Mater. 2(2), 1045–1052 (2019)

    Article  Google Scholar 

  28. H.W. Wu, J.Q. Quan, Y.Q. Yin, Z.Q. Sheng, Strong Purcell effect for magnetic dipole emission with spoof plasmonic spiral structure. J. Opt. Soc. Am. B 37(1), 98–103 (2020)

    Article  ADS  Google Scholar 

  29. H.M. Doeleman, E. Verhagen, A.F. Koenderink, Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth. ACS Photonics 3(10), 1943–1951 (2016)

    Article  Google Scholar 

  30. R.V. Mikhaylovskiy, T.J. Huisman, R.V. Pisarev, T. Rasing, A.V. Kimel, Selective excitation of terahertz magnetic and electric dipoles in Er 3+ ions by femtosecond laser pulses in ErFeO3. Phys. Rev. Lett. 118(1), 017205 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Hong-Wei Wu thanks the supports of the National Natural Science Foundation of China (NSFC) (Grant No. 11904008); the Natural Science Foundation of Anhui Province (Grant No. 1908085QA21); and the China Postdoctoral Science Foundation (Grant No. 2019M662132).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hong-Wei Wu, Shu-Ling Cheng and Yun-Qiao Yin. The first draft of the manuscript was written by Shu-Ling Cheng and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong-Wei Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, SL., Wu, HW. & Yin, YQ. Ultrastrong Purcell enhancement of magnetic dipole emission based on quasi-BIC. Eur. Phys. J. D 76, 211 (2022). https://doi.org/10.1140/epjd/s10053-022-00543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00543-y

Navigation