Skip to main content
Log in

A new entanglement measure based on one-side ONCB projection measurement

  • Regular Article – Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Entanglement measure is an important index for computing quantum entanglement. At present, a considerable number of entanglement measures have been proposed. In this study, an entanglement measure for bipartite quantum states in accordance with one-side ONCB (orthogonal normalization complete basis) projection measurement is presented. This study suggests that the measure is well-defined. This measure is expressed as \(E(\rho )\). It is proven that \(E(\rho )\) satisfies some necessary properties of quantum entanglement measure (e.g., non-negativity, invariance under local unitary operation, as well as monotonicity under local operation and classical communication (LOCC)). Furthermore, we give a upper bound and a lower bound of \(E(\rho )\) for bipartite quantum states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors comment: Data sharing is not applicable to this study since no datasets are generated or analyzed in the current study.]

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  2. S. Phoenix, P.D. Townsend, Quantum cryptography: Protecting our future networks with quantum mechanics. Inf. Secur. Tech. Rep. 2(2), 88–97 (1997)

    Article  MATH  Google Scholar 

  3. C. Liu, J. Fang, The relation between the information entropy and distribution of the quantum statistics systems. J. Yiyang. Teach. Coll. 22(2), 81–88 (1996)

    Google Scholar 

  4. B.P. Lanyon, M. Barbieri, M.P. Almeida, Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 17–20 (2008)

    Article  Google Scholar 

  5. S.L. Braunstein, C.M. Caves, R. Jozsa, Separability of very noisy mixed states and implications for NMR quantum computing. Physics 83(5), 1054 (1998)

    Google Scholar 

  6. H. Baba, M. Mansour, M. Daoud, Global Geometric Measure of Quantum Discord and Entanglement of Formation in Multipartite Glauber Coherent States. J. Russ. Laser. Res. 43(1), 124–137 (2022)

    Article  Google Scholar 

  7. W.K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits. Found. Phys. Lett. 14(10), 199–212 (1997)

    Google Scholar 

  8. A.M. Wang, Simplified and obvious expression of concurrence in Wootters’ measure of entanglement of a pair of qubits. Chin. Phys. Lett. 20(11), 1907–1907 (2003)

    Article  Google Scholar 

  9. F. Verstraete, K. Audenaert, J. Dehaene, A comparison of the entanglement measures negativity and concurrence. J. Phys. A. Math. Gener. 34(47), 10327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Duan, L. Niu, Y. Wang, Relative Entropy and Relative Entropy of Entanglement for Infinite-Dimensional Systems. Int. J. Theor. Phys. 56(6), 1929–1936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Lu, B. Zhao, Relative entropy as a measure of entanglement for Gaussian states. Chin. Phys. 15(9), 1914 (2006)

    Article  Google Scholar 

  12. Shahar Hod, Universal Upper Bound to the Entropy of a Charged System. Phys. Rev. D. 61(2), 483–484 (1999)

    MathSciNet  Google Scholar 

  13. X.N. Zhu, S.M. Fei, Lower Bound of Concurrence for Qubit Systems. Quantum. Inf. Process. 13(3), 815–823 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Wang, T. Liu, R. Ma, Schmidt Number Entanglement Measure for Multipartite k-nonseparable States. Int. J. Theor. Phys. 59(3), 983–990 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.B. Slater, A priori Probabilities of separable quantum states. J. Phys. A. Gen. Phys. 32(28), 5261–5275 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. B.L. Ye, Y.M. Liu, C.J. Xu, X.S. L, Z.J. Z, Quantum Correlations in a Family of Two-Qubit Separable States. Commun. Theor. Phys. 60(3), 283–288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Gao, Detection of genuinely entangled and nonseparable n-partite quantum states. Phys. Rev. A. 82(6), 4229–4231 (2010)

    Article  Google Scholar 

  18. Y.Z. Wang, L. Huang, An entanglement criterion for fully separable multipartite quantum states. Zhongbei Daxue Xuebao (Ziran Kexue Ban)/J. North. Univ. China. Nat. Sci. Edit.36(3), 257-260 (2015)

  19. J.M. Zhu, Local Measurement Induced Minimal Decoherence and its variants. Phys. A. Stat. Mech. Appl. 584, 126357 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Guo, J.C. Hou, Y.Z. Wang, Concurrence for infinite-dimensional quantum systems. Quantum. Inf. Process. 12(8), 2641–2653 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Patrick, M. Coles, L.C. Cerezo, Strong bound between trace distance and Hilbert-Schmidt distance for low-rank states. Phys. Rev. A. 100(2), 0222103 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contribute equally.

Corresponding author

Correspondence to Li Huang.

Additional information

This work is supported by the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201901D111254, 201801D221019). .

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, L., Wang, Y. et al. A new entanglement measure based on one-side ONCB projection measurement. Eur. Phys. J. D 76, 203 (2022). https://doi.org/10.1140/epjd/s10053-022-00534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00534-z

Navigation