Skip to main content
Log in

Quantum interference measurement of the free fall of anti-hydrogen

  • Regular Article – Cold Matter and Quantum Gases
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We analyze a quantum measurement designed to improve the accuracy for the free-fall acceleration of anti-hydrogen in the GBAR experiment. Including the effect of photo-detachment recoil in the analysis and developing a full quantum analysis of anti-matter wave propagation, we show that the accuracy is improved by approximately three orders of magnitude with respect to the classical timing technique planned for the current experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the relevant data are presented in the paper and there are no further data which could be provided.]

References

  1. M. Hori, J. Walz, Physics at CERN’s antiproton decelerator. Prog. Part. Nucl. Phys. 72, 206 (2013)

    ADS  Google Scholar 

  2. W. Bertsche, E. Butler, M. Charlton, N. Madsen, Physics with antihydrogen. J. Phys. B At. Mol. Opt. Phys. 48, 232001 (2015)

    ADS  Google Scholar 

  3. M. Charlton, A. Mills, Y. Yamazaki, Special issue on antihydrogen and positronium. J. Phys. B At. Mol. Opt. Phys. 50, 140201 (2017)

    ADS  Google Scholar 

  4. Y. Yamazaki, Cold and stable antimatter for fundamental physics. Proc. Jpn. Acad. Ser. B 96, 471 (2020)

    ADS  Google Scholar 

  5. H. Bondi, Negative mass in general relativity. Rev. Mod. Phys. 29, 423 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  6. P. Morrison, Approximate nature of physical symmetries. Am. J. Phys. 26, 358 (1958)

    ADS  Google Scholar 

  7. J. Scherk, Antigravity: a crazy idea? Phys. Lett. B 88, 265 (1979)

    ADS  MathSciNet  Google Scholar 

  8. M. Nieto, T. Goldman, The arguments against antigravity and the gravitational acceleration of antimatter. Phys. Rep. 205, 221 (1991)

    ADS  Google Scholar 

  9. E. Adelberger, B. Heckel, C. Stubbs, Y. Su, Does antimatter fall with the same acceleration as ordinary matter? Phys. Rev. Lett. 66, 850 (1991)

    ADS  Google Scholar 

  10. F. Huber, R. Lewis, E. Messerschmid, G. Smith, Precision tests of Einstein’s weak equivalence principle for antimatter. Adv. Space Res. 25, 1245 (2000)

    ADS  Google Scholar 

  11. G. Chardin, G. Manfredi, Gravity, antimatter and the Dirac-Milne universe. Hyperfine Interact. 239, 45 (2018)

    ADS  Google Scholar 

  12. A.E. Charman, Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 4, 1–9 (2013)

    Google Scholar 

  13. M.J. Borchert, J.A. Devlin, S.R. Erlewein, M. Fleck, J.A. Harrington, T. Higuchi, B.M. Latacz, F. Voelksen, E.J. Wursten, F. Abbass, M.A. Bohman, A.H. Mooser, D. Popper, M. Wiesinger, C. Will, K. Blaum, Y. Matsuda, C. Ospelkaus, W. Quint, J. Walz, Y. Yamazaki, C. Smorra, S. Ulmer, A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio. Nature 601, 53 (2022)

    ADS  Google Scholar 

  14. T. Wagner, S. Schlamminger, J. Gundlach, E. Adelberger, Torsion-balance tests of the weak equivalence principle. Class. Quantum Gravity 29, 184002 (2012)

    ADS  Google Scholar 

  15. P. Touboul, G. Métris, M. Rodrigues, Y. André, Q. Baghi, J. Bergé, D. Boulanger, S. Bremer, P. Carle, R. Chhun, B. Christophe, V. Cipolla, T. Damour, P. Danto, H. Dittus, P. Fayet, B. Foulon, C. Gageant, P.-Y. Guidotti, D. Hagedorn, E. Hardy, P.-A. Huynh, H. Inchauspe, P. Kayser, S. Lala, C. Lämmerzahl, V. Lebat, P. Leseur, F. Liorzou, M. List, F. Löffler, I. Panet, B. Pouilloux, P. Prieur, A. Rebray, S. Reynaud, B. Rievers, A. Robert, H. Selig, L. Serron, T. Sumner, N. Tanguy, P. Visser, MICROSCOPE mission: first results of a space test of the equivalence principle. Phys. Rev. Lett. 119, 231101 (2017)

    ADS  Google Scholar 

  16. C. Will, Theory and Experiment in Gravitational Physics, new edition (Cambridge University Press, Cambridge, 2018)

  17. V. Viswanathan, A. Fienga, O. Minazzoli, L. Bernus, J. Laskar, M. Gastineau, The new lunar ephemeris INPOP17a and its application to fundamental physics. Mon. Not. R. Astron. Soc. 476, 1877 (2018)

    ADS  Google Scholar 

  18. S. Maury, W. Oelert, W. Bartmann, P. Belochitskii, H. Breuker, F. Butin, C. Carli, T. Eriksson, S. Pasinelli, G. Tranquille, ELENA: the extra low energy anti-proton facility at CERN. Hyperfine Interact. 229, 105 (2014)

    ADS  Google Scholar 

  19. P. Indelicato, G. Chardin, P. Grandemange, D. Lunney, V. Manea, A. Badertscher, P. Crivelli, A. Curioni, A. Marchionni, B. Rossi, A. Rubbia, V. Nesvizhevsky, D. Brook-Roberge, P. Comini, P. Debu, P. Dupré, L. Liszkay, B. Mansoulié, P. Pérez, J.-M. Rey, B. Reymond, N. Ruiz, Y. Sacquin, B. Vallage, F. Biraben, P. Cladé, A. Douillet, G. Dufour, S. Guellati, L. Hilico, A. Lambrecht, R. Guérout, J.-P. Karr, F. Nez, S. Reynaud, I.C. Szabo, V.-Q. Tran, J. Trapateau, A. Mohri, Y. Yamazaki, M. Charlton, S. Eriksson, N. Madsen, D. Werf, N. Kuroda, H. Torii, Y. Nagashima, F. Schmidt-Kaler, J. Walz, S. Wolf, P.-A. Hervieux, G. Manfredi, A. Voronin, P. Froelich, S. Wronka, M. Staszczak, The GBAR project, or how does antimatter fall? Hyperfine Interact. 228, 141 (2014)

    ADS  Google Scholar 

  20. W. Bertsche, Prospects for comparison of matter and antimatter gravitation with ALPHA-g. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170265 (2018)

    ADS  Google Scholar 

  21. D. Pagano, S. Aghion, C. Amsler, G. Bonomi, R.S. Brusa, M. Caccia, R. Caravita, F. Castelli, G. Cerchiari, D. Comparat, G. Consolati, A. Demetrio, L. Noto, M. Doser, A. Evans, M. Fani, R. Ferragut, J. Fesel, A. Fontana, S. Gerber, M. Giammarchi, A. Gligorova, F. Guatieri, S. Haider, A. Hinterberger, H. Holmestad, A. Kellerbauer, O. Khalidova, D. Krasnický, V. Lagomarsino, P. Lansonneur, P. Lebrun, C. Malbrunot, S. Mariazzi, J. Marton, V. Matveev, Z. Mazzotta, S.R. MÃller, G. Nebbia, P. Nedelec, M. Oberthaler, N. Pacifico, L. Penasa, V. Petracek, F. Prelz, M. Prevedelli, L. Ravelli, B. Rienaecker, J. Robert, O. Røhne, A. Rotondi, H. Sandaker, R. Santoro, L. Smestad, F. Sorrentino, G. Testera, I.C. Tietje, E. Widmann, P. Yzombard, C. Zimmer, J. Zmeskal, N. Zurlo, Gravity and antimatter: the AEgIS experiment at CERN. J. Phys. Conf. Ser. 1342, 012016 (2020)

    Google Scholar 

  22. P. Pérez, D. Banerjee, F. Biraben, D. Brook-Roberge, M. Charlton, P. Cladé, P. Comini, P. Crivelli, O. Dalkarov, P. Debu, A. Douillet, G. Dufour, P. Dupré, S. Eriksson, P. Froelich, P. Grandemange, S. Guellati, R. Guérout, J.M. Heinrich, P.-A. Hervieux, L. Hilico, A. Husson, P. Indelicato, S. Jonsell, J.-P. Karr, K. Khabarova, N. Kolachevsky, N. Kuroda, A. Lambrecht, A.M.M. Leite, L. Liszkay, D. Lunney, N. Madsen, G. Manfredi, B. Mansoulié, Y. Matsuda, A. Mohri, T. Mortensen, Y. Nagashima, V. Nesvizhevsky, F. Nez, C. Regenfus, J.-M. Rey, J.-M. Reymond, S. Reynaud, A. Rubbia, Y. Sacquin, F. Schmidt-Kaler, N. Sillitoe, M. Staszczak, C.I. Szabo-Foster, H. Torii, B. Vallage, M. Valdes, D.P. Van der Werf, A. Voronin, J. Walz, S. Wolf, S. Wronka, Y. Yamazaki, The GBAR antimatter gravity experiment. Hyperfine Interact. 233, 21 (2015)

    ADS  Google Scholar 

  23. J. Walz, T. Hänsch, A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561 (2004)

    ADS  MATH  Google Scholar 

  24. L. Hilico, J.-P. Karr, A. Douillet, P. Indelicato, S. Wolf, F. Schmidt-Kaler, Preparing single ultra-cold antihydrogen atoms for free-fall in GBAR. Int. J. Modern Phys. Conf. Ser. 30, 1460269 (2014)

    Google Scholar 

  25. N. Sillitoe, J.-P. Karr, J. Heinrich, T. Louvradoux, A. Douillet, L. Hilico, \(\overline{\rm H }^{+}\) sympathetic cooling simulations with a variable time step. JPS Conf. Proc. 18, 011014 (2017)

    Google Scholar 

  26. C.J. Baker, W. Bertsche, A. Capra, C. Carruth, C.L. Cesar, M. Charlton, A. Christensen, R. Collister, A.C. Mathad, S. Eriksson, A. Evans, N. Evetts, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, P. Grandemange, P. Granum, J.S. Hangst, W.N. Hardy, M.E. Hayden, D. Hodgkinson, E. Hunter, C.A. Isaac, M.A. Johnson, J.M. Jones, S.A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, N. Madsen, D. Maxwell, J.T.K. McKenna, S. Menary, J.M. Michan, T. Momose, P.S. Mullan, J.J. Munich, K. Olchanski, A. Olin, J. Peszka, A. Powell, P. Pusa, C.O. Rasmussen, F. Robicheaux, R.L. Sacramento, M. Sameed, E. Sarid, D.M. Silveira, D.M. Starko, C. So, G. Stutter, T.D. Tharp, A. Thibeault, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, Laser cooling of antihydrogen atoms. Nature 592, 35 (2021)

    ADS  Google Scholar 

  27. K. Lykke, K. Murray, W. Lineberger, Threshold photodetachment of \({\rm H\mathit{}^{\rm -}}\). Phys. Rev. A 43, 6104 (1991)

    ADS  Google Scholar 

  28. M. Vandevraye, P. Babilotte, C. Drag, C. Blondel, Laser measurement of the photodetachment cross section of \({\rm H }^{-}\) at the wavelength 1064 nm. Phys. Rev. A 90, 013411 (2014)

    ADS  Google Scholar 

  29. D. Bresteau, C. Blondel, C. Drag, Saturation of the photoneutralization of a \(\rm H ^-\) beam in continuous operation. Rev. Sci. Instrum. 88, 113103 (2017)

    ADS  Google Scholar 

  30. B. Radics, G. Janka, D.A. Cooke, S. Procureur, P. Crivelli, Double hit reconstruction in large area multiplexed detectors. Rev. Sci. Instrum. 90, 093305 (2019)

    ADS  Google Scholar 

  31. O. Rousselle, P. Cladé, S. Guellati-Khelifa, R. Guérout, S. Reynaud, Analysis of the timing of freely falling antihydrogen. New J. Phys. 24, 033045 (2022)

    ADS  Google Scholar 

  32. O. Rousselle, P. Cladé, S. Guellati-Khelifa, R. Guérout, S. Reynaud, Improving the statistical analysis of anti-hydrogen free fall by using near edge events. Phys. Rev. A 105, 022821 (2022)

    ADS  Google Scholar 

  33. M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991)

    ADS  Google Scholar 

  34. C.J. Bordé, Atomic clocks and inertial sensors. Metrologia 39, 435 (2002)

    ADS  Google Scholar 

  35. S. Merlet, Q. Bodart, N. Malossi, A. Landragin, F. Pereira Dos Santos, O. Gitlein, L. Timmen, Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9 (2010)

    ADS  Google Scholar 

  36. P. Asenbaum, C. Overstreet, M. Kim, J. Curti, M. Kasevich, Atom-interferometric test of the equivalence principle at the \({10}^{-12}\) level. Phys. Rev. Lett. 125, 191101 (2020)

    ADS  Google Scholar 

  37. P.-P. Crépin, C. Christen, R. Guérout, V. Nesvizhevsky, A. Voronin, S. Reynaud, Quantum interference test of the equivalence principle on antihydrogen. Phys. Rev. A 99, 042119 (2019)

    ADS  Google Scholar 

  38. V. Nesvizhevsky, A. Voronin, R. Cubitt, K. Protasov, Neutron whispering gallery. Nat. Phys. 6, 114 (2009)

    Google Scholar 

  39. V. Nesvizhevsky, H. Börner, A. Petukhov, H. Abele, S. Baeßler, F. Rueß, T. Stöferle, A. Westphal, A. Gagarski, G. Petrov, A. Strelkov, Quantum states of neutrons in the Earth’s gravitational field. Nature 415, 297 (2002)

    ADS  Google Scholar 

  40. V. Nesvizhevsky, H. Börner, A. Gagarski, A. Petoukhov, G. Petrov, H. Abele, S. Baeßler, G. Divkovic, F. Rueß, T. Stöferle, A. Westphal, A. Strelkov, K. Protasov, A. Voronin, Measurement of quantum states of neutrons in the Earth’s gravitational field. Phys. Rev. D 67, 102002 (2003)

    ADS  Google Scholar 

  41. V. Nesvizhevsky, A. Petukhov, H. Borner, T. Baranova, A. Gagarski, G. Petrov, K. Protasov, A. Voronin, S. Baessler, H. Abele, A. Westphal, L. Lucovac, Study of the neutron quantum states in the gravity field. Eur. Phys. J. C 40, 479 (2005)

    ADS  Google Scholar 

  42. P. Froelich, A. Voronin, Interaction of antihydrogen with ordinary atoms and solid surfaces. Hyperfine Interact. 213, 115–127 (2012)

    ADS  Google Scholar 

  43. G. Dufour, A. Gérardin, R. Guérout, A. Lambrecht, V.V. Nesvizhevsky, S. Reynaud, A.Y. Voronin, Quantum reflection of antihydrogen from the Casimir potential above matter slabs. Phys. Rev. A 87, 012901 (2013)

    ADS  Google Scholar 

  44. A. Jurisch, H. Friedrich, Realistic model for a quantum reflection trap. Phys. Lett. A 349, 230 (2006)

    ADS  Google Scholar 

  45. J. Madronero, H. Friedrich, Influence of realistic atom wall potentials in quantum reflection traps. Phys. Rev. A 75, 022902 (2007)

    ADS  Google Scholar 

  46. V. Nesvizhevsky, A.Y. Voronin, Surprising Quantum Bounces (Imperial College Press, London, 2015)

    Google Scholar 

  47. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (NIST, Gaithersburg, 2010)

    MATH  Google Scholar 

  48. O. Vallée, M. Soares, Airy Functions and Applications to Physics (Imperial College Press, London, 2004)

    MATH  Google Scholar 

  49. A.E. Meyerovich, V.V. Nesvizhevsky, Gravitational quantum states of neutrons in a rough waveguide. Phys. Rev. A 73, 063616 (2006)

    ADS  Google Scholar 

  50. M. Escobar, F. Lamy, A.E. Meyerovich, V.V. Nesvizhevsky, Rough mirror as a quantum state selector: analysis and design. Adv. High Energy Phys. 2014, 764182 (2014)

    Google Scholar 

  51. G. Dufour, P. Debu, A. Lambrecht, V.V. Nesvizhevsky, S. Reynaud, A.Y. Voronin, Shaping the distribution of vertical velocities of antihydrogen in GBAR. Eur. Phys. J. C 74, 2731 (2014)

    ADS  Google Scholar 

  52. P. Storey, C. Cohen-Tannoudji, The Feynman path-integral approach to atomic interferometry—a tutorial. J. Phys. II 4, 1999 (1994)

    Google Scholar 

  53. M. Fréchet, Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Rev. Int. Stat. Inst. 11, 182 (1943)

    MATH  Google Scholar 

  54. H. Cramér, Mathematical Methods of Statistics (New Edition) (Princeton University Press, Princeton, 1999)

    MATH  Google Scholar 

  55. P. Réfrégier, Noise Theory and Application to Physics: From Fluctuations to Information, Advanced Texts in Physics (Springer, New York, 2004)

    MATH  Google Scholar 

  56. P.-P. Crépin, G. Dufour, R. Guérout, A. Lambrecht, S. Reynaud, Casimir-Polder shifts on quantum levitation states. Phys. Rev. A 95, 032501 (2017)

    ADS  Google Scholar 

  57. P.-P. Crépin, R. Guérout, S. Reynaud, Improved effective range expansion for Casimir–Polder potential. Eur. Phys. J. D 73, 256 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the GBAR collaboration https://gbar.web.cern.ch/ for insightful discussions, in particular P.P. Blumer, C. Christen, P.-P. Crépin, P. Crivelli, P. Debu, A. Douillet, N. Garroum, L. Hilico, P. Indelicato, G. Janka, J.-P. Karr, L. Liszkay, B. Mansoulié, V.V. Nesvizhevsky, F. Nez, N. Paul, P. Pérez, C. Regenfus, F. Schmidt-Kaler, A.Yu. Voronin, S. Wolf. This work was supported by the Programme National GRAM of CNRS/INSU with INP and IN2P3 co-funded by CNES and by Agence Nationale pour la Recherche, Photoplus Project No. ANR-21-CE30-0047-01.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the proposition and interpretation of results, and to the redaction of the paper. O. R. conducted the numerical simulations.

Corresponding author

Correspondence to Pierre Cladé.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rousselle, O., Cladé, P., Guellati-Khélifa, S. et al. Quantum interference measurement of the free fall of anti-hydrogen. Eur. Phys. J. D 76, 209 (2022). https://doi.org/10.1140/epjd/s10053-022-00526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00526-z

Navigation